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Abstract

The angular dependence of azimuthal asymmetry of cross sections for the 4He( �γ ,p)T and 4He( �γ ,n)3He
reactions was measured at linearly polarized photon energies of 40, 60 and 80 MeV. With the data obtained
as the basis and using the previously measured differential cross sections, a multipole analysis of the reac-
tions was performed in the E1, E2 and M1 approximation. The cross sections for the multipole transition
and their errors were estimated by multiply solving the set of equations that relate the Legendre coefficients
to the multipole amplitude moduli. Cross sections for spin S = 1 transitions of the final-state particles were
determined.
 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Measurements of cross sections for the multipole transition present interest from the viewpoint
of determining both the contribution of meson exchange currents (MEC) to the reaction cross sec-
tions and the wave function components of the 4He nucleus with nonzero orbital momentum of
nucleons. By the present time, only the cross sections for spin S = 0 electric dipole and quadru-
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pole transitions of final-state particles have been determined to sufficient accuracy [1–3]. The
difficulties in determining the S = 1 transition cross sections are mainly due to their small val-
ues, and also to the absence of reliable theoretical predictions as to which particular spin S = 1
transition is the basic one. The available experimental data are also contradictory. For exam-
ple, when investigating the inverse 3H( �p,γ )4He reaction in the polarized proton beam of energy
Ep = 2 MeV the authors of Ref. [4] have concluded that E1 3P1 is the basic transition (2S+1Lj

in spectroscopic notation, where S is the final-state spin, L is the orbital momentum of the nu-
cleon, j is the total momentum of the photon). However, in studies of the same reaction in the
polarized proton beam of energy Ep between 0.8 and 9 MeV, the authors of Ref. [5] have sug-
gested that it is the M1 3S1 transition that is basic. At higher photon energies the measurements
are complicated by the necessity of considering the M1 3D1 amplitude, which is suppressed at
low proton energies Ep < 10 MeV (Eγ < 27 MeV) by the angular momentum barrier.

The present paper first presents the multipole analysis of the 4He(γ,p)T and 4He(γ,n)3He
reactions in the energy range up to Eγ ∼ 60 MeV. The analysis is based on the experimental
data obtained at KIPT on differential cross sections and azimuthal asymmetry of cross sections.
The amplitude magnitudes were calculated by the random-test method. At the present time it
is common practice to use the least squares method (LSM) for the multipole analysis of meson
photoproduction [6], nuclear photodisintegration, as well as for the phase analysis of elastic
scattering of particles. It should be noted that the sought-for values of multipole amplitudes
bilinearly enter into theoretical expressions that describe the experimental data, and this may
lead to two positive solutions of the problem. In this case, the LSM method must be used with
certain care. In particular, in the case of closely adjacent solutions the LSM method may give
overestimated errors in the calculation of amplitudes. In the present work we have calculated the
coefficients that linearly enter into the equations for the multipole expansion. With the use of
relationships between the coefficients and the multipole amplitudes, combined equations were
set up, which were solved numerically. The amplitude moduli and their errors were calculated
as a result of multiple Monte Carlo samplings of coefficients and their uncertainties, and also by
averaging the corresponding solutions of the mentioned equations.

2. Experimental data

The multipole analysis of the 4He(γ,p)T and 4He(γ,n)3He reactions was carried out with the
use of data on differential cross sections dσ/dΩ and azimuthal asymmetry of cross section Σ(θ).
Differential cross sections were measured using the bremsstrahlung beam of photons at the KIPT
linac LEA-300 at the maximum energy Emax

γ = 150 MeV. The reaction products were detected
in a diffusion chamber placed in the magnetic field. The total number of registered events of
4H disintegration made up ∼3 × 104 per reaction channel. The differential cross sections were
measured with a 1 MeV step up to a photon energy of 45 MeV, and with a greater step at higher
energies. The step in the measurements of the polar angle of nucleon emission was 100 in the
c.m.s. Some results of the analysis have been published in a number of papers [1,7]. The data
on the differential cross sections were partially published in Refs. [8,9]. Unfortunately, not all
measured points have been presented in the theoretical paper [9]; this led to a small χ2 value
(χ2 ∼ 0.1) per point [10].

The data on the angular dependence of the azimuthal asymmetry of cross section of two-body
( �γ ,p) and ( �γ ,n) reactions were obtained with a linearly-polarized photon beam of energies of
40, 60 and 80 MeV at the KIPT accelerator LEA-2000. The beam of linearly polarized pho-
tons was produced as a result of coherent bremsstrahlung of 500, 600 and 800 MeV electrons,
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respectively, in a thin diamond single crystal. The reaction products were registered by the use
of a streamer chamber located in the magnetic field [11]. The streamer chamber was flushed by
pure 4He. The total number of treated events makes ∼3 × 103 per reaction channel. The two-
body ( �γ ,p) reaction identified by the coplanarity of photon, proton and tritium momentum, by
the equality of the transverse components of proton and tritium momentum, and also visually,
by the track density. As a result, the contribution of background reactions to the (γ,p) reaction
under study was negligibly small. The two-body ( �γ ,n) reaction was registered through the recoil
nuclei 3He. In the streamer chamber, the 3He nuclei could not be distinguished from the 4He nu-
clei, which could be produced, for example, in the reaction 4He(γ,π0)4He induced by photons of
energy higher than the pion threshold. A nearly 5-fold increase of the coherent radiation of pho-
tons in comparison with the bremsstrahlung spectrum reduced the contribution of background
reactions to the (γ,n) channel. The calculations have demonstrated that at E

peak
γ = 40 MeV the

contribution of background reactions to the (γ,n) channel was less than 5%, and at E
peak
γ = 60

and 80 MeV the corresponding corrections were introduced. When calculating the corrections we
have used the experimental data of Ref. [12] on the total cross sections of π0-photoproduction.
The details of the experiment and the first results from measurements of the asymmetry have
been published earlier [13].

Events occurring in the measured gamma-quantum energy ranges 34 � Eγ < 46 MeV,
46 � Eγ < 65 MeV and 65 � Eγ < 90 MeV were used to determine the asymmetry at each
of the mentioned average energies of linearly polarized photons, respectively. The measured data
for the azimuthal asymmetry are given in Table 1. The errors are statistical only. The total er-
ror may also be contributed by the systematic error, which is due, in particular, to inaccuracy in
determining the effective degree of photon beam polarization, and also, to an insufficiently cor-

Table 1
Angular dependence of the azimuthal asymmetry of the 4He( �γ ,p)T and 4He( �γ ,n)3He reactions cross-section

E
peak
γ , MeV �θN , deg Σ(θp) Σ(θn)

40 20–40 1.1 ± 0.3 0.79 ± 0.34
40–60 0.86 ± 0.18 1.15 ± 0.22
60–80 0.81 ± 0.18 0.77 ± 0.19
80–100 1.02 ± 0.19 0.93 ± 0.16

100–120 0.72 ± 0.25 0.79 ± 0.17
120–140 0.94 ± 0.28 1.03 ± 0.16
140–160 0.73 ± 0.74 0.7 ± 0.35

60 20–40 0.73 ± 0.28 0.35 ± 0.3
40–60 0.90 ± 0.2 0.7 ± 0.21
60–80 1.1 ± 0.2 0.9 ± 0.2
80–100 0.37 ± 0.26 0.9 ± 0.21

100–120 0.95 ± 0.3 0.49 ± 0.22
120–140 1.17 ± 0.33 0.81 ± 0.2
140–160 0.64 ± 1.08 0.85 ± 0.4

80 20–40 0.71 ± 0.48 1.1 ± 0.38
40–60 0.90 ± 0.27 1.2 ± 0.25
60–80 0.86 ± 0.26 1.06 ± 0.28
80–100 0.77 ± 0.41 0.84 ± 0.32

100–120 1.56 ± 0.26 0.69 ± 0.29
120–140 −1.34 ± 0.53 0.64 ± 0.29
140–160 – 1.28 ± 0.37
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rect consideration of the background π0-meson photoproduction process in the (γ,n) channel at
Eγ � 60 MeV [13].

3. Multipole analysis of the 4He(γ,p)T and 4He(γ,n)3He reactions

The laws of conservation of the total momentum and parity for two-body (γ,p) and (γ,n)

reactions in the E1, E2 and M1 approximation permit two multipole transitions E1 1P1 and E2
1D2 with the spin S = 0 and four transitions E1 3P1, E2 3D2, M1 3S1 and M1 3D1 with the
spin S = 1 of final-state particles. The differential cross section in the c.m.s. can be expressed in
terms of multipole amplitudes as follows [14,15]:
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where λ− is the reduced wavelength of the photon.
It can be shown that the azimuthal asymmetry of cross sections is described by the following

expression:
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Expressions (1) and (2) comprise 11 independent parameters. The currently available experi-
mental data on the (γ,p) and (γ,n) reactions are insufficient for determining all the parameters.
Here we assumed the E2 3D2 amplitude to be the smallest of the amplitudes entering into ex-
pressions (1) and (2), this being in agreement with both the theoretical estimate [16] and the
experimental evidence [5]. After elimination of the E2 3D2 amplitude-containing components,
there remained 9 unknown parameters.

According to the isotopic-spin selection rules [17], the isoscalar parts of the E1 and M1 ampli-
tudes in the 4He nucleus are substantially suppressed. Therefore, in the present analysis we have
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Table 2
Average δ

j
sl

phases values for two photon energy ranges

Phase, deg Eγ = (34–46) MeV Eγ = (46–65) MeV

δ1
10 −115◦ −136◦

δ1
11 40◦ 18◦

δ1
12 −14◦ 6◦

used the isovector phase differences between the E1 3P1, M1 3S1 and M1 3D1 amplitudes [15]
calculated from the phase analysis of elastic (p, 3He) scattering [18,19]. The data were available
for the proton energy range 18 � Ep � 50 MeV or, correspondingly, for the photon energy range
33 � Eγ � 58 MeV. The phase differences between the E1 3P1, M1 3S1 and M1 3D1 amplitudes
that enter into expressions (1) and (2) were considered as fixed parameters, and the remaining six
parameters as free. The phase analysis data were used to calculate the average values of phases
δ
j
sl (j is the total momentum, l is the relative orbital momentum, s is the spin of the particle sys-

tem) in the photon energy ranges, for which the asymmetry of (γ,p) and (γ,n) reaction cross
sections was measured. The average phase values used in the calculation are presented in Table 2.
The experimental data on the differential cross sections were also averaged in the same photon
energy ranges.

The free parameters were calculated in two ways: Firstly, by the standard LSM method in fit-
ting the right-hand sides of expressions (1) and (2) to the experimental data on dσ/dΩ and Σ(θ).
Secondly, the random-test method was used. This approach consisted in determination of the co-
efficients Ai at the Legendre polynomials from the differential cross section data, with their
subsequent use for calculation of multipole amplitude moduli.

dσ/dΩ =
4∑

i=0

AiPi(cos θ). (3)

The coefficients A, β , γ , ε and ν are of frequent use in the literature. With their use, the
differential cross section can be presented as
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[
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]
. (4)

These coefficients are more obvious and are unambiguously related to the Legendre polyno-
mial coefficients:

A = 1/8(12A2 + 5A4), β = 20A3/(12A2 + 5A4), γ = 35A4/(12A2 + 5A4),

ε = −8(A1 + A3)/(12A2 + 5A4), ν = −8(A0 + A2 + A4)/(12A2 + 5A4). (5)

In the same terms, the azimuthal asymmetry of cross section can be represented as follows:

Σ(θ) = sin2 θ(1 + α + β cos θ + γ cos2 θ)

sin2 θ(1 + β cos θ + γ cos2 θ) + ε cos θ + ν
. (6)

The coefficients A, β , γ , ε, ν and α are expressed in terms of the multipole amplitudes as:
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It can be seen from expression (3) that in the E1, E2 and M1 approximation only 5 indepen-
dent coefficients can be determined from the measured differential cross sections. So, an increase
in the accuracy of measuring only the differential cross section in order to determine the coeffi-
cients at the Legendre polynomials of the degree higher than cos4(θ) fails to provide information
on subsequent multipole amplitudes. In this case, the number of unknown parameters in the right
side of Eq. (1) will increase much quicker than the number of measured coefficients in the left
side. Therefore, to get more detailed information on the multipole amplitudes, further polariza-
tion experiments or other information sources are needed. It is evident from expression (6) that
experimental data on the azimuthal asymmetry can provide the sixth independent coefficient.

4. The calculational procedure

The multipole amplitude moduli were calculated as follows. From the fit of expressions (4)
and (6) to the experimental differential cross section and azimuthal asymmetry data described
in Section 2 the coefficients A, α, β , γ , ε, and ν were calculated by the LS method. Since
these coefficients enter linearly into expansions (4) and (6), the solution was the one. In Table 3
the coefficient A values are given in µb/sr, the rest coefficient values are dimensionless. The
experimental data obtained in Ref. [10] on the coefficients ε, and ν at the photon energy Eγ =
67 ± 4 MeV have the errors higher than the ones calculated with the data from Refs. [1,8], and
exerted no essential effect on the results of the multipole analysis.

The calculated coefficients were used to construct a set of six equations (7)–(12) containing
six unknown parameters. The parameters and their errors were determined through 5000 Monte
Carlo samplings of the coefficients A, α, β , γ , ε, and ν and their experimental errors. The errors
of the coefficients were assumed to be distributed by the normal law. After each sampling the
set of equations was solved numerically. As the set of equations comprised 6 equations, the
number of all the solutions made up 26, the positive solutions being two in the majority of cases.
The solution, where the |E1 3P1| amplitude value was smaller than in the other solution was
considered to be the first. At a small number of samplings there was one positive solution. The
positive solutions were stored and used for calculating the average values of multipole amplitude
moduli and phase differences δ( 1P1)–δ( 1D2), and also their dispersions.
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Table 3
Expansion coefficients of the differential cross section and azimuthal asymmetry Σ(�)

Coeff. Eγ = (34–46), MeV Eγ = (46–65), MeV Eγ = (65–90), MeV
4He(γ,p)T

Ap 87.98 ± 1.55 27.65 ± 0.9 13.4 ± 0.4
βp 0.76 ± 0.03 1.19 ± 0.07 1.07 ± 0.06
γp 0.43 ± 0.06 0.92 ± 0.13 0.88 ± 0.12
εp 0.014 ± 0.005 −0.003 ± 0.008 −0.004 ± 0.008
νp 0.029 ± 0.005 0.014 ± 0.008 0.019 ± 0.012
αp −0.08 ± 0.09 −0.1 ± 0.09 −0.08 ± 0.13
χ2 20.7 29.4 43.0

4He(γ,n)3He

An 85.6 ± 1.31 33.66 ± 0.84 14.9 ± 0.46
βn −0.08 ± 0.03 0.15 ± 0.044 0.35 ± 0.06
γn 0.62 ± 0.06 0.75 ± 0.1 0.83 ± 0.13
εn 0.002 ± 0.004 −0.013 ± 0.006 0.007 ± 0.008
νn 0.027 ± 0.004 0.018 ± 0.007 0.027 ± 0.012
αn −0.07 ± 0.08 −0.27 ± 0.1 −0.04 ± 0.13
χ2 20.3 23.0 22.3

In some part of samplings, the set of equations appeared to be inconsistent and had no pos-
itive solutions. The consistency coefficient k, being the ratio of the number of samplings with
a consistent system to the total number of samplings, is given in Table 4. A small consistency
coefficient may be due to a poor compatibility of the experimental data on photodisintegration,
errors phase differences of the E1 3P1, M1 3S1 and M1 3D1 amplitudes or to inadequacy of
the E1, E2 and M1 approximation. For the cases of the consistent set of equations, one of the
solutions appeared to be close to the solution found by the LS method at fitting expressions
(1) and (2) (with |E2 3D2| = 0) to the experimental data on dσ/dΩ and Σ(θ). An insignifi-
cant divergence between the LSM solutions and the solutions by the random-test method, and
correspondingly, between their χ2 values (see Table 3), was due to the fact that, for example,
all samplings with α > 0 were inconsistent with the statement of the problem. Considering that
cos[δ(3S1)–δ(3D1)] < 0, then according to relation (12), the value must be only α < 0. The χ2

values of the two solutions calculated by the random-test method were very close. Their val-
ues are listed in Table 4. A systematic increase in the measured asymmetry values led to an
insignificant increase in the consistency coefficient k. By varying the differential cross section
or asymmetry values it was possible to choose such conditions, at which the two solutions ap-
peared close. In this case, the errors calculated by the LSM tended to infinity, whereas the errors
calculated by the random-test method were practically independent of the difference between the
solutions of the set of equations. Correctness of miscalculations computation for both methods
may require an additional research. To find the two solutions by the LS method, χ2 calculations
of the sought-for parameters on the six-dimensional lattice are necessary.

The calculated cross sections of multipole transitions are presented in Table 4. Column 1a
gives the cross sections calculated through samples, where there was one solution. Since the M1
transition cross section, measured in the 3He(n, γ )4He reaction in the vicinity of the threshold
at thermal neutron energies, makes up σ(M1 3S1) = 57 ± 3 µb [20], and with an increase in
the photon energy it decreases as 1/v [4], where v is the final-state nucleon velocity, it can be
assumed that it is solution 2 that is correct. The calculational results are presented in Fig. 2,
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Fig. 1. The coefficients αp and αn for two-body ( �γ ,p) and ( �γ ,n) reactions. In the assumption of the dominant contribu-
tion of the E1 3P1 transition amongst spin S = 1 transitions of the coefficients αp and αn would be equal to zero.

where the diamond the data from Ref. [4]. To calculate the cross section for the E1 3P1 transition
in absolute units, we have used the data of Ref. [1]: σγp(Eγ = 21.25 MeV) = 0.42 mb. The
triangles show the data obtained from the study of the inverse reaction [5], the points stand for
our present data. The errors are statistical only.

If it assumed that σ(E2 3D2) � σ(M1), then from expression (2) we obtain:

α = 50|E2 3D2|2
18|E1 1P1|2 − 9|E1 3P1|2 − 25|E2 3D2|2 > 0, (13)

i.e., this assumption is not in agreement with the experimental data obtained.

5. Discussion of results

Experimental data about azimuthal asymmetry of the cross section of two-body ( �γ ,p) and
( �γ ,n) reactions on the nucleus of 4He were obtained with a linearly polarized photons was re-
sulted in Table 1 and on Fig. 1 as the coefficients αp and αn. In case of the dominant contribution
of E1 3P1 transition among all transitions with spin S = 1 in the final state of the particles the
coefficients αp and αn would be equal to zero. The experimental data obtained point to the con-
siderable contribution of the M1 transition in the photon energy range up to Eγ ∼ 60 MeV. The
conclusion is in agreement with the preliminary estimates of Refs. [21,22]. The results of experi-
ment on the determination of total cross sections for the multipole transitions are given in Table 4
and in Fig. 2. The diamond present the data from Ref. [4], the triangles show the data obtained
from the study of the inverse reaction of radiative capture of protons by tritium nuclei [5].

The multipole amplitude moduli were calculated by solving numerically the set of equations
relating the coefficients A, α, β , γ , ε, and ν (or their analogs at the Legendre polynomials) to the
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4He(γ,n)3He transition cross sections, µb

Solut 1 Solut 2 Solut 1a

698 ± 11 699 ± 11 700 ± 11
88 ± 11.9 87.4 ± 12.5 88 ± 12
0.3 ± 0.4 8.9 ± 5.9 9.2 ± 5.3
22 ± 12.7 6 ± 3.7 3.4 ± 2.6
16.1 ± 15.2 19.7 ± 14.7 24.5 ± 15.3
−0.054 ± 0.05 −0.054 ± 0.05 −0.054 ± 0.02
0.15 0.15 0.08
21.6 21.1 22.5

277 ± 7.2 277 ± 7.2 277 ± 7.8
46.3 ± 7.4 46 ± 7.4 40.7 ± 6.1
0.5 ± 0.5 3.3 ± 1.7 5.8 ± 1.6
3.9 ± 3.6 9.1 ± 4.9 1.1 ± 1
38.4 ± 12.4 28.7 ± 11 6.2 ± 2.7
0.09 ± 0.03 0.092 ± 0.03 0.08 ± 0.03
0.25 0.25 0.008
24.0 24.1 28.5
Table 4
Total cross sections of multipole transitions of two-body reactions of 4He disintegration

Photon energy range, MeV Transition 4He(γ,p)T transition cross sections, µb

Solut 1 Solut 2 Solut 1a

34–46 σ(E1 1P1) 716 ± 13 717.9 ± 13
σ(E2 1D2) 62 ± 11 61 ± 11
σ(E1 3P1) 1.8 ± 1.5 13.3 ± 5.1
σ(M1 3S1) 29.4 ± 7 9 ± 5
σ(M1 3D1) 7.9 ± 8.8 10.3 ± 9.9
cos[δ( 1P1) − δ( 1D2)] 0.59 ± 0.05 0.59 ± 0.05
k 0.13 0.13 0.001
χ2 21.3 21.3

46–65 σ(E1 1P1) 228 ± 8 228.4 ± 8 228.4 ± 8
σ(E2 1D2) 44.4 ± 7.3 44.1 ± 7.3 41.5 ± 6.5
σ(E1 3P1) 0.2 ± 0.2 2.5 ± 1.4 4.1 ± 1.5
σ(M1 3P1) 3.8 ± 5.3 5 ± 3.2 0.9 ± 0.9
σ(M1 3D1) 13 ± 10.2 10.3 ± 6.3 3.5 ± 2.1
cos[δ( 1P1) − δ( 1D2)] 0.64 ± 0.06 0.64 ± 0.06 0.64 ± 0.08
k 0.4 0.4 0.07
χ2 30.9 29.6 30.7
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Fig. 2. Total cross sections of spin S = 1 transitions of 4He(γ,p)T and 4He(γ,n)3He reactions. �—data from Ref. [4];
�—data of Ref. [5], ◦-our data.

amplitude moduli with the use of the random-test method. This approach provides the calculation
of all the solutions that satisfy the statement of the problem, and the calculated errors are inde-
pendent of the difference between the found solutions. The approach also makes it possible to
determine what particular experimental data errors give the greatest contribution to inaccuracies
in the sought-for parameter values.

According to theoretical estimates, at Eγ ∼ 22 MeV [4,23] the total cross section for S = 1
transitions of final-state particles in the one-particle approximation makes � 0.01% of the total
reaction cross section. The consideration of the MEC contribution increases the E1 3P1 transition
cross section to ∼ 0.5% of the total cross section [4], this being consistent with our data. In the
M1 3S1 transitions, the MEC present the dominant part [23]. A substantial increase in the total
cross section of the M1 transition may be due to both the spin–flip reaction of the hadronic final-
state particle system and a possible contribution of the ground-state wave-function components
of the 4He nucleus with nonzero orbital momentum of nucleons, in particular, P components.
Unfortunately, few theoretical calculations of total cross sections for S = 1 transitions of the
final-state particles can be found in the literature. More precise measuring of azimuthal asymme-
try of the cross section of two-body ( �γ ,p) and ( �γ ,n) disintegration reactions of 4He are needed.
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