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Dynamic behavior of a superconducting flux qubit excited by a series of electromagnetic
pulses
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We study theoretically the behavior of a superconducting flux qubit subjected to a series of elec-
tromagnetic pulses. The possibility of controlling the system state via changing the parameters of
the pulse is studied. We calculated the phase shift in the tank circuit weakly coupled to the qubit
which can be measured by the impedance measurement technique. For the flux qubit we consider
the possibility of estimating the relaxation rate from the impedance measurements by varying the
delay time between the pulses. © 2007 American Institute of Physics. �DOI: 10.1063/1.2747079�
I. INTRODUCTION

Quantum effects in mesoscopic superconducting circuits
based on small Josephson junctions have attracted renewed
attention. It has been demonstrated that Josephson devices at
low temperature behave like quantum two-level systems.
Therefore, ideas developed in atomic and molecular physics
can be used for description of artificially fabricated circuits
of macroscopic size. These concepts are stimulated further
by the prospects for realizing quantum bits �qubits� for quan-
tum information processing. Qubits are effective two-level
quantum systems with externally controlled parameters. In
the last decade a large number of proposals for implementing
qubits based on Josephson elements have been proposed.1–4

There are three basic types of Josephson-junction circuits
that behave quantum mechanically at low temperature. They
are charge,1 phase,2 and flux3 qubits. All of them can be
fabricated with high precision with the help of modern li-
thography and can be the basis of the quantum computer. A
promising implementation for quantum computations is a 3JJ
flux qubit consisting of a superconducting loop with three
Josephson junctions.3 This type of qubit is insensitive to
charge noise, and it has been shown that it has a high quality
factor.5 It was predicted that such systems should exhibit
various quantum-mechanical effects including macroscopic
quantum tunneling of the flux.6 Indeed, the predicted effects
have been observed experimentally.2,7,8 The quantum dynam-
ics in single qubits was studied in Refs. 3, 4, and 9.

In our work we study the dynamics of the flux qubit
subjected to a series of rectangular electromagnetic pulses.
We present the model we use for calculations of the phase
shift � in the resonant tank circuit based on the density ma-
trix approach. Next we analyze the case which permits ana-
lytical solution and obtain small addition to the � in the
ground state as function of the relaxation rate �R. For arbi-
trary parameters we solve equations numerically and com-
pare obtained result with analytical calculations.

II. THE MODEL

Our aim is to study the behavior of a superconducting
3JJ flux qubit excited by a series of rectangular electromag-
netic pulses. The flux qubit consists of a superconducting
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loop with three junctions: two identical and one with the
parameters differing by factor �. For all calculations below
we take � equal to 0.8.

The Hamiltonian of the flux qubit in the two-level ap-
proximation has the form:10,11

Ĥ = − ��̂z − ��̂x, �1�

where the diagonal term � is the bias and the off-diagonal
term ��exp�−EJ /EC� is the tunneling amplitude between
the wells. Here �̂x and �̂z are Pauli matrices in the basis
��↓ � , �↑ �� of the current operator in the qubit: Î= I0�̂z, I0

= IC��� ,g� /2	, where IC is the critical current of the qubit,
g=EJ /EC, the explicit formula for ��� ,g� can be found in
Ref. 12. The eigenstates of �̂z correspond to the clockwise
��̂z � ↓ �=−�↓ � and counterclockwise ��̂z � ↑ �= �↑ �� currents in
the qubit. The bias

� = I0
0	 f −
1

2

 �2�

is controlled by the dimensionless applied magnetic flux f
=
x /
0 through the qubit; 
0=h /2e is the flux quantum.

The magnetic flux consists of two components:

f = fDC + f̃�t� , �3�

which describe the adiabatically changing magnetic flux,
fDC, and the time-dependent component, f̃�t�. We will study
the possibility to control the system state via the series of the
rectangular pulses with the amplitude fA and duration from
t1
�n�=n�T+�� to t2

�n�=n�T+��+T:

f̃�t� = � fA���t − t1
�n�� − ��t − t2

�n��� , �4�

where ��t� stands for the theta function, T is the pulse dura-
tion, and � is the delay between pulses �Fig. 1�. The effect of
the pulse is to change the level occupation probabilities and
make them oscillating functions of time during the pulse. It
should be noted that in the basis ��↓ � , �↑ �� of the current
operator, which are not eigenstates of the Hamiltonian, the
probabilities oscillate both during and after the pulse.

We describe the system’s evolution with the Bloch equa-
tion for the density matrix ̂ ��=1�:
© 2007 American Institute of Physics
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d̂

dt
= − i�Ĥ, ̂� + �̂̂ . �5�

The impedance measurement technique13,14 consists in
that the tank circuit probes the effective inductance of the
system via measuring the phase shift � between the voltage
and current in the tank circuit. The phase shift � is related to
the Josephson inductance L of the qubit as follows:

tan � � k2QLL−1, �6�

L−1 =
1


0

�Î�
� fDC

= =
I0


0

�

� fDC
Tr�̂�̂z� . �7�

Here M is the mutual inductance of the qubit with the tank
circuit; Q=RT�CT /LT and k=M /�LLT are the quality factor
and the coupling coefficient for the tank circuit, which con-
sists of the inductor, LT, capacitor, CT, and resistor, RT, con-
nected in parallel �see Ref. 15 for more details�.

III. EXCITATION OF THE FLUX QUBIT WITH THE SERIES
OF PULSES

In this Section we study the excitation of the flux qubit
with the series of rectangular pulses. We start from the gen-
eral 1-qubit Hamiltonian that has the form of Eq. �1� in the
basis of states ��↓ � , �↑ ��, assuming f̃�t�=0. For a flux qubit
these states correspond to a definite direction of the current
circulating in the ring. First the time-independent Hamil-
tonian is diagonalized in the basis of eigenstates ��−� , �+ ��
with the rotation matrix Ŝ:

Ŝ = 	 cos��/2� sin��/2�
− sin��/2� cos��/2�


 ,

with sin �=−� /��2+�2, cos �=� /��2+�2.
For the calculation of the observable value, the phase

shift � in the tank circuit, according to Eq. �6�, we need the
density matrix in the energy representation, where its diago-
nal components are equal to the probability of the system to
be in the ground �−� or excited state �+ �.

Next we introduce the time-dependent terms into the
time-independent Hamiltonian. Making use of the transfor-
mation Ĥ�t�= Ŝ−1Ĥ�t�Ŝ, we get the Hamiltonian Ĥ�t� in the
energy representation for the flux qubit:16

Ĥ�t� = −
�E

2
�̂z − 2I0
0 f̃�t��cos ��̂z + sin ��̂x�/�E , �8�

FIG. 1. The series of pulses.
�E = 2��2 + �2. �9�

The time evolution of the density matrix, which can be
taken in the form ̂= �1̂+X�̂x+Y�̂y +Z�̂z� /2, is described by
the equation of motion �5�. Initial condition for the density
matrix in the ��−� , �+ �� basis is X�0�=Y�0�=0, Z�0�=1,
which corresponds to the ground state of the system. Solving
the system of equations for X�t�, Y�t�, Z�t� with phenomeno-
logically introduced dephasing and relaxation rates �� and
�R:

dX

dt
= ��E + h�t�cos����Y − ��X ,

dY

dt
= h�t�sin���Z − ��E + h�t�cos����X − ��Y ,

dZ

dt
= − h�t�sin���Y − �R�Z − Z�0�� , �10�

with h�t�=2I0
0 f̃�t�, we obtain the probability of occupation
of the upper level �+ � �the excited state� P+�t�=22�t�= �1
−Z�t�� /2. We calculate the density matrix in the flux basis
making use of the transformation ̂flux= Ŝ̂Ŝ−1 and obtain the
probability of the current to be circulating in the clockwise
direction PL�t�, according to:

PL�t� =
1

2
�1 − sin���X�t� − cos���Z�t�� . �11�

Averaging PL�t� over t, we calculate phase shift � ac-
cording to Eq. �6�. For arbitrary values of the parameters of
applied perturbation the system of equations �10� can be
solved numerically. In the limiting case of one pulse �that is
�=�� and without relaxation processes taken into account
the solution can be found in Ref. 17.

Before presenting the numerical results, consider the
limiting case which permits the analytical solution:

T � TR,� = �R,�
−1 � � . �12�

In this case we can neglect the decay rates �R and �� in �10�
during the excitation time T and assume that after the pulse
during the delay time � the system is returned to the ground
state. Periodically repeating this process, we will have the
input of relaxation processes in the time-averaged character-
istics of the system.

With the assumptions �12� and for zero temperature the
solution of the equations �10� can be found for the two time
intervals: during the pulse �0� t�T� and after the pulse �T
� t�T+��.

The solution for 0� t�T is the following:

X1�t� =
2AC

A2 + C2 sin2	1

2
�A2 + C2t
 ,

Y1�t� = −
A

� 2 2
sin��A2 + C2t� ,
A + C
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Z1�t� =
1

A2 + C2 �C2 + A2 cos��A2 + C2t� , �13�

where A=−h sin �, C=−�E−h cos �, h=2I0
0fA; and, for
T� t�T+�:

X2�t� = exp�− ���t − T���X1�T�cos��E�t − T��

+ Y1�T�sin��E�t − T��� ,

Z2�t� = 1 − exp�− �R�t − T���1 − Z1�T�� .

Let the duration of the pulse T be equal to 	 /�A2+C2,
which corresponds to one cycle of excitation during the time
T.

Then we obtain:

X2�t� = exp�− ���t − T��
2AC

A2 + C2 cos��E�t − T�� ,

Z2�t� = 1 −
2A2

A2 + C2 exp�− �R�t − T�� .

Taking into account the inequalities �12�, we obtain for the
time-averaged values Z̄ and X̄ the following expressions:

X̄ �
2AC

A2 + C2

��

���
2 + �E2��

, �14�

Z̄ � 1 −
2A2

A2 + C2

1

�R�
. �15�

Before substituting these values in the �11� and �16� we es-
timate the contribution of X̄ and Z̄ to the phase shift � for the
parameters we use for calculation. Our evaluation indicates
that the contribution of X̄ is about three orders lower than
that of Z̄, so we neglect the term containing X̄ in Eq. �11�. We
calculate the small addition to the phase shift � due to the
relaxation process ��1�. At the point f =1 /2 we obtain after
some algebra:

��1� =
k2QL


0

2fA
2�I0
0�3

���I0
0fA�2 + �2�
1

��R
. �16�

Hence from the measurement of the phase shift � at the
point f =1 /2 it is possible to estimate the relaxation rate ac-
cording to Eq. �16�. The behavior of ��1� at the point f
=1 /2 as a function of the product ��R is presented in Fig. 2.
In the calculations we use the same parameters as in the
numerical calculations below.

Now we study the excitation of the flux qubit by the
series of rectangular pulses numerically. Namely we calcu-
late the phase shift in the tank circuit by making use of the
solution of the Eqs. �6� and �10�. Fig. 3 is plotted for the
following set of the parameters for the qubit: I0
0

=200 GHz, �=1.4 GHz, k2Q�LI0� /
0=2�10−3; the excita-
tion f̃�t� was considered to be a series of pulses with �
=T��−1, �=0.5�−1, �=2�−1 �from upper to lower� and the
decay rates �R=��=�=0.1 GHz. We observe that at �
��−1 the resonances disappear with increasing the delay
time �. This can be used in practice for the relatively simple
estimation of the decay rates by changing the delay time
between the pulses.
Next we compare the theoretically �dashed� and numeri-
cally �marked by points� calculated curves for the phase shift
� calculated under the assumption �12� from the �14� and
�15�. For the numerical calculations we use the following
parameters of the pulse: T=0.5, �=100, fA=0.005 and of the
decay rates �R=��=�=0.1 GHz. Such values of �, T, and
�R,� correspond to the limiting case which we considered
previously �12�, and one can see very good agreement in Fig.
4.

IV. CONCLUSION

We have studied the dynamics of a flux qubit subjected
to a series of rectangular electromagnetic pulses. We inves-
tigated the changes of the tank circuit phase shift � for the
single qubit that appears due to excitation by the pulses. It
was demonstrated that the response of the tank circuit essen-
tially depends on the relation between the decay rates �R,�

and the delay time �, which may be used for estimation of �R

by measuring the phase shift � as a function of the delay
time �.
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helpful discussions. A.N.O. acknowledges the partial finan-
cial support of DFG grant. S.N.S. acknowledges the financial
support of INTAS under the Fellowship Grant for Young
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FIG. 2. The addition to the phase shift �1 for the flux qubit excited by a
series of rectangular pulses, due to the relaxation process in the point
f =0.5.

FIG. 3. The phase shift � for the flux qubit excited by a series of rectangular
pulses with: T=�=0.5 �a�, T=0.5, �=5 �b�, T=0.5, �=20 �c�.
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