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The problem of vortex structure in a single Josephson junction in an external magnetic field, in the absence
of transport currents, is reconsidered from a new mathematical point of view. In particular, we derive a
complete set of exact analytical solutions representing all the stationary points �minima and saddle-points� of
the relevant Gibbs free-energy functional. The type of these solutions is determined by explicit evaluation of
the second variation of the Gibbs free-energy functional. The stable �physical� solutions minimizing the Gibbs
free-energy functional form an infinite set and are labeled by a topological number Nv=0,1 ,2 , . . . . Mathemati-
cally, they can be interpreted as nontrivial “vacuum” �Nv=0� and static topological solitons �Nv=1,2 , . . . � of
the sine-Gordon equation for the phase difference in a finite spatial interval: solutions of this kind were not
considered in previous literature. Physically, they represent the Meissner state �Nv=0� and Josephson vortices
�Nv=1,2 , . . . �. Major properties of the new physical solutions are thoroughly discussed. An exact, closed-form
analytical expression for the Gibbs free energy is derived and analyzed numerically. Unstable �saddle-point�
solutions are also classified and discussed.
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I. INTRODUCTION

In this paper, we reconsider the old physical problem1–3 of
equilibrium vortex structure in a single Josephson junction
from a new mathematical point of view. The necessity of
such reconsideration is motivated by the fact that, in spite of
significant contribution by a number of authors �see, e.g.,
Refs. 4–8�, the problem did not find an exact and complete
analytical solution in previous theoretical literature. In par-
ticular, the basic question, namely, “What should be called
an equilibrium Josephson vortex in precise mathematical
terms?,” remained unanswered. Over years, this issue has
been a source of considerable misunderstanding. For ex-
ample, there still exists a wide-spread erroneous belief9,10

that Josephson vortices “do not form” in “small” junctions
with W�2�J, where W is the length of the insulating barrier
and �J is the Josephson length.1–3 �In reality, Josephson vor-
tices do form for arbitrary small W�0, provided the exter-
nally applied magnetic field H is sufficiently high; see Sec.
V.�

To clarify the situation, we consider the simplest case of a
junction in a constant, homogeneous external magnetic field,
in the absence of externally applied currents. Relevant geom-
etry is presented in Fig. 1. In particular, the x axis is perpen-
dicular to the insulating layer �the barrier�, and the y axis is
along the barrier. The barrier length W=2L is assumed to be
arbitrary: 0�W��. A constant, homogeneous external
magnetic field H is applied along the axis z: H= �0,0 ,H
�0�. Full homogeneity along the z axis is assumed.

The difficulties of most previous approaches to the prob-
lem arose from the incompleteness of a traditional
formulation2–5 in terms of a static �time-independent� sine-
Gordon equation

d2�

dy2 =
1

�J
2 sin � �1�

for the phase difference �=��y� and physical boundary con-
ditions

d�

dy
�±L� = 2edH �	 = c = 1� . �2�

Indeed, Eqs. �1� and �2� constitute an ill-posed boundary-
value problem11 in the sense that they do not meet the re-
quirement of the uniqueness of the solution. �This is a con-
sequence of nonlinearity of Eq. �1� and of the physical
boundary conditions being imposed on d� /dy instead of �.�
Thus, although the general solution to �1� was well-known,12

FIG. 1. The geometry of the problem: t is the thickness of the
barrier; W=2L is the length of the barrier; � is the London penetra-
tion depth; d=2�+ t is the width of the field-penetration region
�shaded�. The external magnetic field H is directed into the plane of
the figure.
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the constants of integration specifying all physically observ-
able configurations could not be unambiguously determined
from boundary conditions �2� alone.

An obvious way to overcome the problem of incomplete-
ness lies in an observation that Eqs. �1� and �2� are nothing
but stationarity conditions of a relevant Gibbs free-energy
functional.13,14 Therefore, among all solutions to �1� that sat-
isfy �2� at a given H, one has to choose those that minimize
�at least locally� the Gibbs free-energy functional. By general
physical arguments, the stable �in a mathematical sense� so-
lutions should represent an observable thermodynamically
stable state �in the case of an absolute minimum�, as well as
observable thermodynamically metastable states �in the case
of local minima�. Unfortunately, the issue of exact minimi-
zation of the Gibbs free-energy functional did not receive
appropriate attention in the previous literature. �However,
stability of some particular solutions was analyzed from a
somewhat different point of view, e.g., in Refs. 6–8.�

The fact that a complete set of stable solutions to �1� and
�2� can be obtained in a closed analytical form has been first
demonstrated in Refs. 13 and 14 within the framework of
minimization of a certain wide class of energy functionals
whose particular representative is the Gibbs free-energy
functional of a single Josephson junction. Exact analytical
solutions of Refs. 13 and 14 form an infinite set and are
labeled by a topological �vortex� number Nv=0,1 ,2 , . . .. As
is pointed out in Refs. 13 and 14, these solutions constitute a
new class of particular solutions to the sine-Gordon equation
that can be interpreted as nontrivial “vacuum” �for Nv=0�
and static topological solitons �for Nv=1,2 , . . .� in a finite
spatial interval. Solutions of this type were not considered in
the previous literature on the sine-Gordon equation.15–17

In what follows, we show that the new topological solu-
tions resolve the problem formulated at the beginning of the
Introduction. To make the paper self-contained and indepen-
dent of Refs. 13 and 14, we employ a new, more general
method of the derivation of topological solutions. In particu-
lar, we start with a full set of solutions to �1� and �2�. In
contrast to the approach of Refs. 13 and 14, the selection of
stable �physical� solutions is made by explicit evaluation of
the sign of the second variation of the Gibbs free-energy
functional, which allows us to establish general conditions of
stability.

In Sec. II, we introduce the Gibbs free-energy functional
and show that all its stationary points are either minima or
saddle points. In Sec. III, the second variation of the Gibbs
free energy is discussed. We show that the sign of the second
variation is related to the sign of the lowest eigenvalue of a
certain Sturm-Liouville eigenvalue problem. In this way, we
establish general conditions of stability. In Sec. IV, a full set
of solutions to �1� and �2� is obtained and classified with
respect to stability. In Sec. V, a full set of stable �physical�
solutions to �1� and �2� is derived. These solutions comprise
a Meissner solution �Nv=0� and vortex solutions �Nv
=1,2 , . . . �. Their major physical and mathematical properties
are thoroughly discussed. An exact, closed-form expression
for the Gibbs free energy is derived. This expression is ana-
lyzed numerically in the cases of a “large” junction and a
“small” junction. In Sec. VI, unstable �saddle-point� solu-
tions to �1� and �2� are classified and discussed. In Sec. VII,

we summarize the main results of the paper and make a few
concluding remarks. Finally, in the Appendix, we analyze
stability in two singular cases �the Meissner solution in a
semi-infinite interval and the single-soliton solution in an
infinite interval�.

II. GIBBS FREE-ENERGY FUNCTIONAL: MAJOR
PROPERTIES

From now on, we will employ dimensionless units. Thus,
the length scale along the y axis is normalized to the Joseph-
son penetration length �J. The magnetic field is normalized
to the superheating field of the Meissner state in a semi-
infinite junction2 Hs= �ed�J�−1. The energy scale is normal-
ized to d�JHs

2 /16. �In particular, the flux quantum in our
dimensionless units is given by 
0=�.�

In terms of the dimensionless units, a phase-dependent
part of the Gibbs free-energy functional per unit length along
the z axis takes the form13,14

�G��,
d�

dy
;H�

= 2H2W + �
−L

L

dy�1 − cos ��y� +
1

2
�d��y�

dy
�2�

− 2H���L� − ��− L�� . �3�

Note that the last term in Eq. �3� is, physically, proportional
to the magnetic �Josephson� flux


J = 1
2 ���L� − ��− L�� , �4�

with

h�y� =
1

2

d�

dy
�5�

being the corresponding local magnetic field �equilibrium or
not�.

The stationarity condition of the Gibbs free-energy func-
tional �3�,


�G��,
d�

dy
;H� = 0, �6�

reduces to the static sine-Gordon equation for the phase dif-
ference

d2�

dy2 = sin � �7�

and boundary conditions

d�

dy
�±L� = 2H � 0. �8�

�Compare with Eqs. �1� and �2�, respectively, where dimen-
sional units are employed.�

The main property of the functional �3� follows from the
fact that it belongs to the class of regular functionals, i.e.,
satisfies a necessary condition of the minimum;18 hence, all
stationary points of �3� are either minima of saddle points.
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�Unfortunately, the statement of Ref. 7 that all stationary
points of �3� “are minima” is incorrect.�

As already mentioned in the Introduction, boundary con-
ditions �8� do not ensure the uniqueness of the solution to
Eq. �7�. Moreover, solutions to �7� and �8�, as stationary
points of the Gibbs free-energy functional �3�, can corre-
spond to either minima or saddle points of this functional.
Taking into account that only stable phase configurations,
corresponding to minima of �3�, are physically observable,
the problem one has to solve can be formulated as follows:
Find all solutions to �7� and �8� that minimize �at least lo-
cally� �3� at given H�0. To resolve this problem, we have to
turn to sufficient conditions of the minimum,18 which re-
quires an analysis of the second variation of �3�.

III. SECOND VARIATION OF THE GIBBS FREE-ENERGY
FUNCTIONAL AND A RELATED STURM-LIOUVILLE

EIGENVALUE PROBLEM

Let �= �̄�y� be a particular solution to �7� and �8� �i.e., a
certain stationary point of �3��. The increment of the Gibbs
free-energy functional �3� in the vicinity of this solution,
induced by variations �̄�y�→ �̄�y�+
��y�, where 
� has a
continuous derivative that obeys boundary conditions

d
�

dy
�− L� =

d
�

dy
�L� = 0, �9�

can be expanded in an infinite series18

��G�
�,
d
�

dy
;H�

�=�̄

=
1

2!

2�G�
�,

d
�

dy
�

�n=�̄n

+ �
k�3

1

k!

k�G�
���=�̄. �10�

Here,


2�G�
�,
d
�

dy
�

�=�̄

= �
−L

L

dy�cos �̄�y��
��y��2 + �d
�

dy
�y��2� , �11�

and


k�G�
���=�̄ = − �
−L

L

dy cos��̄�y� +
k�

2
��
��y��k, k � 3.

�12�

The sign of the second variation �11� in the expansion
�10� determines a type of the tested solution �= �̄�y�. Three
different cases are possible: �i� the case


2�G�
�,
d
�

dy
�

�=�̄

� 0 �13�

corresponds to a minimum of �3� �i.e., the solution is inside a
stability region�; �ii� the case


2�G�
�,
d
�

dy
�

�=�̄

� 0, �14�

corresponds to a boundary of the stability region �a bifurca-
tion point�,19 when the solution can loose stability with re-
spect to a certain variation; �iii� finally, if

2�G�
� , �d
� /dy���=�̄ has no definite sign, the solution
corresponds to a saddle point of �3�, which means absolute
instability. Therefore, in what follows, we concentrate our-
selves on the evaluation of 
2�G.

As is shown in variational theory of eigenvalues,20 the
functional 
2�G satisfies the following general relation:21


2�G�
�,
d
�

dy
�

�=�̄

� �0�
−L

L

dy�
��y��2, �15�

where �0 is the lowest eigenvalue of the Sturm-Liouville
eigenvalue problem

−
d2�

dy2 + cos �� �y�� = ��, y � �− L,L� , �16�

d�

dy
�− L� =

d�

dy
�L� = 0. �17�

Equality on the right-hand side of relation �15� is achieved,
when 
� coincides �up to a factor� with the eigenfunction
corresponding to �0, i.e., 
�	const �0. As is clear from
relation �15�, the three different types �i�–�iii� of the behavior
of 
2�G correspond, respectively, to �i� �0�0; �ii� �0=0;
�iii� �0�0.

The properties of the self-adjoint operator, specified by
the left-hand side of Eq. �16� and boundary conditions �17�,
are well-known.22 In particular, its spectrum �n �n
=0,1 ,2 , . . . � is discrete, real, infinite and bounded from be-
low,

�0 � �1 � �2 � ¯ . �18�

�Note that in our case 
�0
�1.� The corresponding eigen-
functions �n �n=0,1 ,2 , . . . � are real, mutually orthogonal
and can be normalized,

�
−L

L

dy�n�y��m�y� = 0, n � m; 0 � �
−L

L

dy��n�y��2 � � .

�19�

The eigenvalue number n determines the number of nodes of
the eigenfunction �n in the interval �−L ,L�. Thus, the eigen-
function �0 can be considered strictly positive,

�0 = �0�y� � 0, y � �− L,L� . �20�

Significantly, the set of eigenfunctions ��n�n=0
� is complete in

the sense that any function f�y� that possesses continuous
derivatives up to the second order and obeys boundary con-
ditions f�±L�=0 can be expanded in terms of �n.

Upon substitution of a solution of the boundary-value
problem �7� and �8� into �16�, this equation can be trans-
formed into the well-known23 Lamé equation. Therefore, the
boundary-value problem for �=�0 can, in principle, be
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solved analytically. However, since we need to know only
the sign of �0, we will derive below a set of exact relations
that will allow us to determine the sign of �0 without explicit
evaluation of �0.

First, we notice that the function

� 	
d�

dy
, �21�

where �=��y� is a particular solution to �7� and �8� �in what

follows, we drop the bar over �� �, satisfies the equation

−
d2�

dy2 + cos ��y�� = 0. �22�

Combining �21�, �22�, and �16� �with �=�0, �=�0�, using
boundary conditions �17�, we obtain the sought relations

�0 =

�0�L�
d2�

dy2 �L� − �0�− L�
d2�

dy2 �− L�

�
−L

L

dy�0�y�
d�

dy
�y�

=
�0�L�sin ��L� − �0�− L�sin ��− L�

�
−L

L

dy�0�y�
d�

dy
�y�

. �23�

�For definiteness, we choose the sign of �0 according to
�20�.� In addition, we note that, if �0 is known explicitly, �0
can be found from the relation

�0 =

�
−L

L

dy�0�y�cos ��y�

�
−L

L

dy�0�y�
. �24�

IV. COMPLETE SET OF SOLUTIONS AND THEIR
CLASSIFICATION WITH RESPECT TO STABILITY

We begin with the first integral of Eq. �7�,

1

2
�d�

dy
�2

+ cos � = C, − 1 � C � � , �25�

where C is the constant of integration. Using �25�, it is
straightforward to derive the general solution to �7�.12 We
write down this solution in the following explicit form:

�I� −1�C�1:

�±�y� = ��2n + 1� ± 2 arcsin�k sn�y − y0,k��,

n = 0, ± 1, . . . ,

− K�k� � y0 � K�k�, k 	
1 + C

2
, 0 � k � 1;

�26�

�II� 1�C��:

�±�y� = ��2n + 1� ± 2 am
 y − y0

k
,k�, n = 0, ± 1, . . . ,

− kK�k� � y0 � kK�k�, k 	
2

1 + C
, 0 � k � 1.

�27�

Here, the functions am u and sn u are the Jacobi elliptic am-
plitude and the elliptic sine, respectively; K�k� is the com-
plete elliptic integral of the first kind.24 The choice of sign
�i.e., �+ or �−� and allowed values of the constants of inte-
gration y0, k in �26� and �27� should be determined from the
requirement of compatibility with boundary conditions �8�
that we rewrite in a somewhat generalized form,

d�

dy
�− L� = const � 0,

d�

dy
�L� = const � 0, �28�

d�

dy
�− L� =

d�

dy
�L� . �29�

A. Solutions of type I

Consider solutions of type I �Eqs. �26��. First, we note
that, for this type of solution,


��L� − ��− L�
 � 2� �30�

for any 0�L��. Taking into account that

d�±

dy
= ± 2k cn�y − y0,k� , �31�

where cn u is the elliptic cosine, from �28� we find that the
appropriate solution is �=�+. If L�� /2, the constant of
integration k� �0,1�. In contrast, for L�� /2, the allowed
values for k are k=0 and k� �km ,1�, where km is determined
from the condition

K�km� = L . �32�

Condition �29� yields an equation for y0,

sn�L,k�dn�L,k�sn�y0,k�dn�y0,k� = 0,

where dn u= �d /du�am u, whose unique solution is y0=0.
Thus, solutions of type I, compatible with boundary condi-
tions �8�, have the form

��y� = ��2n + 1� + 2 arcsin�k sn�y,k��, n = 0, ± 1, . . . ,

�33�

where k� �0,1� for L�� /2, and k=0, k� �km ,1� for L
�� /2.

An analysis of stability of solutions �33� is straightfor-
ward. Thus, for k=0 we have

��y� = ��2n + 1�, n = 0, ± 1, . . . . �34�

The exact eigenfunction in �24� is �0=const�0, which im-
mediately yields �0=−1. For k�0, the denominator in �23�
is positive, whereas
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d2�

dy2 �L� 	 − sn�L,k�dn�L,k� � 0,

d2�

dy2 �− L� 	 sn�L,k�dn�L,k� � 0.

Therefore, �0�0. In other words, solutions �33� correspond
to saddle points of �3� and, hence, are unstable and physi-
cally unobservable.

B. Solutions of type II

Consider solutions of type II �Eqs. �27��. In contrast to the
solutions of type I �see Eq. �30��, now


��L� − ��− L�
 � � �35�

for any 0�L��. Using the derivative

d�±

dy
= ±

2

k
dn
 y − y0

k
,k� , �36�

from �28� we conclude that the appropriate solution is �
=�+, with k� �0,1�. Condition �29� yields an equation for
y0,

sn
L

k
,k�cn
L

k
,k�sn
 y0

k
,k�cn
 y0

k
,k� = 0. �37�

If L /k�pK�k� �p=1,2 , . . . � in �37�, this equation has two
different solutions,

y0 = − kK�k�, y0 = 0. �38�

Correspondingly, solutions �27�, compatible with boundary
conditions �8�, split into two distinct sets:

�e�y� = ��2n + 1� + 2 am
 y

k
+ K�k�,k�, n = 0, ± 1, . . . ,

�39�

and

�o�y� = ��2n + 1� + 2 am
 y

k
,k�, n = 0, ± 1, . . . .

�40�

The meaning of the subscripts e �even� and o �odd� should be
clear from the following: for solutions �39�, we have �e�0�
=2��n+1� �n=0, ±1, . . . �; in contrast, for solutions �40�,
�o�0�=��2n+1� �n=0, ±1, . . . �. Using Eq. �7� and its de-
rivative,

d3�

dy3 = cos �
d�

dy
, �41�

we find that the ”local magnetic field” �5� at y=0 has a
minimum for �e and a maximum for �o.

It is interesting to note that the two sets of solutions �39�
and �40� are related by the Bäcklund transformations

1

2

d

dy
��o ± �e� =

1 ± �1 − k2

k
sin

�o � �e

2
,

which, in the general case of a time-dependent sine-Gordon
equation, is a hallmark of complete integrability.15–17 By vir-
tue of the symmetry relations

�e�− y� = − �e�y� + 4��n + 1� ,

�o�− y� = − �o�y� + 2��2n + 1� ,

the eigenfunction �0 in �16� and �17� is necessarily symmet-
ric with respect to reflection: �0�−y�=�0�y�. As a result, for

�	const �0, all the odd terms 
2m+1�G �m=1,2 , . . . � in
expansion �10� vanish by symmetry.

Stability regions for solutions �39� and �40� can be estab-
lished as follows. First, we note that the roots of the equa-
tions

pkK�k� = L, p = 1,2, . . . , �42�

k=kp� �0,1�, form an infinite decreasing sequence of bifur-
cation points:

1 � k1 � k2 � ¯ . �43�

Indeed, the second derivatives of �e and �o, respectively,
read

d2�e

dy2 �y� = 2�1 − k2

sn
 y

k
,k�cn
 y

k
,k�

dn2
 y

k
,k� ,

d2�o

dy2 �y� = − 2 sn
 y

k
,k�cn
 y

k
,k� . �44�

Using Eq. �44�, we find

d2�e,o

dy2 �±L� = 0 �45�

for k=kp �p=1,2 , . . . �. Substituting �=�e,o with k=kp �p
=1,2 , . . . � into Eq. �23�, using �45� and the fact that the
denominator in Eq. �23� is strictly positive, we find �0=0
both for �=�e and �=�o. �As a matter of fact, the deriva-
tives d�e,o /dy, for k=kp �p=1,2 , . . . �, coincide �up to a nor-
malization factor� with the eigenfunctions �0e,o correspond-
ing to the eigenvalues �0e,o=0.�

The bifurcation points k=kp �p=1,2 , . . . � subdivide the
interval I	�0,1� into an infinite set of semi-open intervals,

I = �p=0
� Ip, �46�

where

I0 = �k1,1�; Ip = �kp+1,kp�, p = 1,2, . . . . �47�

The index of these intervals p=0,1 ,2 , . . . can be expressed
as
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p = ��e,o�L� − �e,o�− L�
2�

� , �48�

where �¯� stands for the integer part of the argument. As can
be easily verified using Eqs. �23� and �44�, �0e�0 and �0o
�0 for k� I0; �0e�0 and �0o�0 for k� I2m �m=1,2 , . . . �;
�0e�0 and �0o�0 for k� I2m+1 �m=0,1 ,2 , . . . �. �We again
emphasize that the equalities �0e,o=0 are realized only at the
bifurcation points k=kp �p=1,2 , . . . �.� On these grounds, we
conclude that stability regions for the solutions �=�e are
given by the intervals I2m �m=0,1 ,2 , . . . �, whereas stability
regions for the solutions �=�o are given by the intervals
I2m+1 �m=0,1 ,2 , . . . �.

It is instructive to illustrate the above general results by
explicit evaluation of �0=�0�k� for k�1. In this limit, the
lowest eigenvalue �0 can be expanded in a power series of k,

�0 = �
n�1

�0
�n��k� ,

where �0
�n��k� is of order kn �n=1,2 , . . . �. Here, we restrict

ourselves to the evaluation of �0
�1��k�, i.e., �0��0

�1��k�. In
view of the asymptotic expansions

�e�y� � 2��n + 1� +
2y

k
−

ky

2
−

k2

4
sin

2y

k
, n = 0, ± 1, . . . ,

�49�

�o�y� � ��2n + 1� +
2y

k
−

ky

2
+

k2

4
sin

2y

k
, n = 0, ± 1, . . . ,

�50�

it is sufficient to take a zeroth-order approximation to �0:
�0��0

�0�. In zeroth order in k, Eqs. �16� and �17� for �0
become

d2�0
�0�

dy2 = 0,
d�0

�0�

dy
�− L� =

d�0
�0�

dy
�L� = 0,

whose the solution is

�0e,o
�0� = const. �51�

Upon substitution of Eqs. �49�–�51� into Eq. �24�, we obtain

�0e
�1� = k sin

W

k
, �0o

�1� = − k sin
W

k
. �52�

Expressions �52� immediately yield bifurcation points for k
�1,

kp =
W

�p
, p = 1,2, . . . , �53�

in full agreement with �42�.
Summarizing, in this section we have derived a complete

set of the solutions to �7� �both stable and unstable�, compat-
ible with boundary conditions �8�. The only stable solutions
�i.e., corresponding to the minima of �3�� are those given by
Eq. �39� and Eq. �40�, where k� I2m �m=0,1 ,2 , . . . � and k

� I2m+1 �m=0,1 ,2 , . . . �, respectively. In the next two sec-
tions both the stable and unstable solutions will be analyzed
in more detail.

V. STABLE MEISSNER AND VORTEX (SOLITON)
SOLUTIONS

It is convenient to introduce a unified classification of the
stable solutions, directly related to their physical interpreta-
tion. To this end, we introduce a new integer, the vortex �or
topological� number Nv=0,1 , . . ., by means of the definition

Nv 	 p = ���L� − ��− L�
2�

� = � 1

2�
�

−L

L

dy
d�

dy � �54�

�compare Eq. �48��, and fix the so far arbitrary integer n
=0, ±1, ±2, . . . in Eqs. �39� and �40� by the condition,

��0� = �Nv. �55�

�Here, �=�e for Nv=2m �m=0,1 ,2 , . . . �, and �=�o for
Nv=2m+1 �m=0,1 ,2 , . . . �.� Finally, using boundary condi-
tions �8� for the determination of k, we arrive at the desired
form for the stable solutions,13,14

�e�y� = ��Nv − 1� + 2 am
 y

k
+ K�k�,k�, k = k�H�:

�56�

dn
L

k
,k� =

�1 − k2

kH
, Nv = 2m �m = 0,1, . . . �; �57�

�o�y� = �Nv + 2 am
 y

k
,k�, k = k�H�: �58�

dn
L

k
,k� = kH, Nv = 2m + 1 �m = 0,1, . . . � , �59�

where Nv=0 corresponds to the vortex-free Meissner
�“vacuum”� solution, and Nv=1,2 , . . . corresponds to vortex
�soliton� solutions. The stability regions in terms of the field
H take the form

0 � H � H0, Nv = 0, �60�

�HNv−1
2 − 1 � H � HNv

, Nv = 1,2, . . . , �61�

with HNv
implicitly determined by

�Nv + 1�K
 1

HNv

� = HNv
L . �62�

According to the results of Sec. IV, we have 
2�G�0 within
the whole semi-open interval �60�. Analogously, 
2�G�0
inside the semi-open intervals �61�, whereas 
2�G�0 at
their boundaries. �Note that the upper bounds of the stability
regions �60� and �61� are also determined by the condition

2�G�0.�

Solutions �56�–�62� satisfy the symmetry relations
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��− y� = − ��y� + 2�Nv �63�

and obey the boundary conditions

− � � ��− L� � 0, 2�Nv � ��L� � 2��Nv + 1
2� ,

�64�

which ensures the fulfillment of the stability conditions

d2�

dy2 �− L� � 0,
d2�

dy2 �L� � 0. �65�

As to major properties of the stable solutions, we want to
emphasize the following.

The stable solutions form an infinite set and their exis-
tence regions �60� and �61� overlap �at least for two neigh-
boring states�. This fact not only ensures that the stable so-
lutions cover the whole field range 0�H��, but also
proves that hysteresis is an intrinsic property of any Joseph-
son junction, irrespective of the value of W��. However,
overlapping is stronger for larger values of W and at 1�W
�� may involve several neighboring states. On the other
hand, overlapping decreases with an increase of H.

Soliton �vortex� solutions with Nv=1,2 , . . . exist for arbi-
trary small W��, provided the field H�0 is sufficiently
high. We also note that the single-soliton �Nv=1� solution
appears at a finite �for any W��� field H=�H0

2−1�0,
which should be contrasted with the case of the infinite in-
terval �−� , +��; see Eq. �68� below.

Solutions with Nv=1,2 , . . . are pure solitons only at H
=�HNv−1

2 −1, when ��−L�=0, ��L�=2�Nv and 
2�G�0. In
the rest of the stability regions �61�, when 
2�G�0, we have
solitons “dressed” by the Meissner field. As a matter of fact,
solitons �vortices� are confined to the spatial interval �−l , l�,
where l is determined from the conditions ��−l�=0, ��l�
=2�Nv. In contrast, the intervals �−L ,−l� and �l ,L� are “re-
served” for the Meissner field. Nevertheless, although Jo-
sephson vortices always exist against a background of the
Meissner field, solutions �56�–�62� with Nv=1,2 , . . . by no
means can be thought of as a mere superposition of the
Meissner and the vortex fields, because the principle of su-
perposition does not hold for the nonlinear equation �13�.

A solution with Nv=0,1 ,2 , . . . solitons cannot be continu-
ously transformed into the solution with Nv+1 solitons and
vice versa. Therefore, any transitions between configurations
with different vortex numbers Nv are necessarily thermody-
namic first-order phase transitions.

Some examples of the stable solutions �for Nv=0,1 ,2�,
obtained by numerical evaluation of Eqs. �56�–�62�, are pre-
sented in Fig. 2. In several particular cases, known from the
previous literature, solutions �56�–�62� can be expressed in
terms of elementary functions. For example, at H=0 and
arbitrary L��, there exists only the trivial Meissner �Nv
=0� solution �0�y�	0, y� �−L ,L�. In the low-field limit 0
�H�1, the Meissner solution �Eq. �56� with Nv=0� reads

�0�y� �
2H

cosh L
sinh y, h�y� �

H

cosh L
cosh y .

FIG. 2. Stable solutions for L=3.0. �a� The Meissner solution
�Nv=0�: curves 1 and 2 correspond to the cases 0�H�H0 and H
=H0, respectively. �b� The single-vortex solution �Nv=1�: curves
1–3 correspond to the cases H=�H0

2−1, �H0
2−1�H�H1 and H

=H1, respectively; the vortex is confined to the spatial intervals
denoted by vertical arrows. �c� The two-vortex solution �Nv=2�:
curves 1–3 correspond to the cases H=�H1

2−1, �H1
2−1�H�H2

and H=H2, respectively; the vortices are confined to the spatial
intervals denoted by vertical arrows.
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By changing the variable y→y−L and proceeding to the
limit L→� in Eqs. �56� and �57� with Nv=0, we obtain the
exact Meissner solution in a semi-infinite interval,2

�0��y� = − 4 arctan
H exp�− y�
1 + �1 − H2

, y � �0, + �� . �66�

Equation �66� immediately yields the upper bound of the
existence of the Meissner state �or the superheating field of
the Meissner state� in the semi-infinite junction, H0	Hs=1.
The local magnetic field induced by �66�,

h�y� =
H�1 + �1 − H2�

�1 + �1 − H2�exp y − H2 sinh y
, y � �0, + �� ,

�67�

vanishes at y= +�, as it should.
By proceeding to the limit ±L→ ±�, H→0, we find two

different solutions; namely, the trivial Meissner �Nv=0� so-
lution �0�y�	0, y� �−� , +��, and the well-known single-
soliton �Nv=1� solution in an infinite interval15–17

�1��y� = 4 arctan exp y, y � �− �, + �� . �68�

The local magnetic field induced by �68�,

h�y� = cosh−1 y, y � �− �, + �� , �69�

vanishes at y= ±�. Note that, from a point of view of the
analysis of stability, solutions �66� and �68� constitute singu-
lar cases �see Appendix�.

Of particular interest is the limit H�max�1,W�, which,
physically, corresponds to negligibly small screening by Jo-
sephson currents. In this limit, the overlapping of states with
different Nv practically vanishes, and Eqs. �57�–�59�
become25

�e,o�y� � �Nv + 2Hy −
�− 1�Nv

4H2 �sin�2Hy� − 2Hy cos�HW�� ,

�70�

where Nv= �HW /��, according to �54�. The distribution of
the local magnetic field induced by �70� is

h�y� � H −
�− 1�Nv

4H
�cos�2Hy� − cos�HW�� . �71�

Equations �70� and �71� explicitly demonstrate the existence
of solitons �or Josephson vortices� in the case W�1.

Upon substitution of �56� and �57� into �3�, we obtain
exact, closed-form analytical expressions for the Gibbs free
energy. It is convenient to write down these expressions in
terms of the average energy density ��H ,k�	�G�H ,k� /W,

��H,k� = �e�H,k�
Nv,2m + �o�H,k�
Nv,2m+1 �m = 0,1, . . . � ,

�72�

�e�H,k� = 2H2 +
8

W
�1

k
E
W

2k
+ K�k�,k�

−
1

k
E�k� −

�1 − k2�W
4k2 �

−
8H

W
�am
W

2k
+ K�k�,k� −

�

2
�, k = k�H�;

�o�H,k� = 2H2 +
8

W
�1

k
E
W

2k
,k� −

�1 − k2�W
4k2 �

−
8H

W
am
W

2k
,k�, k = k�H� , �73�

where 
Nv,2m and 
Nv,2m+1 are the Kronecker indices; E�u ,k�
and E�k� are, respectively, the incomplete and complete el-
liptic integrals of the second kind.24 Note that in the limit
H�max�1,W� �i.e., in the domain of validity of �70��, Eqs.
�72� and �73� reduce to

��H� � 1 −

sin�HW�


HW
+

1

8H2�cos2�HW� +
1

2
� . �74�

In Figs. 3�a� and 3�b�, we present ��H�, obtained by nu-
merical evaluation of �72� and �73�, for the cases of a “large”
�L=3� junction and a “small” �L=0.3� junction, respectively.
Figure 3�a� exhibits strong overlapping of neighboring stable
configurations, whereas in Fig. 3�b� overlapping is practi-
cally invisible. The envelope of the energy curves for Nv
=0,1 , . . . ,6 corresponds to the absolute minimum of the
Gibbs free energy at a given H �a thermodynamically stable
configuration�. Parts of the energy curves that lie above the
envelope in Fig. 3�a� correspond to local minima of the
Gibbs free energy �thermodynamically metastable configura-
tions�. For better orientation in the physical situation, we
have specified the upper bound of the existence of the Meiss-
ner state �H=H0� and the first thermodynamic critical field1–3

�H=Hc1�. �The latter field is determined by the requirement
that the Gibbs free energies of the states Nv=0 and Nv=1 be
equal to each other.� Both the fields, H0 and Hc1, strongly
depend on the length W; they increase �although at different
rates� with a decrease of W. For example, for 1�W��,
they are approximately given by H0�Hs=1 and Hc1�2/�,
whereas for W�1 they practically coincide: Hc1�H0
�� /W �see Fig. 3�b��. Note that by decreasing the external
field below H=Hc1, one can still observe the single-vortex
state down to the field H=�H0

2−1�Hc1 �the abscissa of the
left end of the energy curve for Nv=1 in Fig. 3�a��.

VI. UNSTABLE (SADDLE-POINT) SOLUTIONS

There are three different types of unstable �saddle-point�
solutions to �7� and �8�. Unstable solutions of the first and
the second types obey symmetry relations

��− y� = − ��y� + 2�Z , �75�

where Z is an integer. In contrast to the stable solutions of
Sec. V, this integer cannot be made to satisfy relation

S. V. KUPLEVAKHSKY AND A. M. GLUKHOV PHYSICAL REVIEW B 73, 024513 �2006�

024513-8



Z = ���L� − ��− L�
2�

�
by any transformation �→�+2�n �n=0, ±1, . . . � and, thus,
has no meaning of a topological number. In view of �75�, the
eigenfunction �0 in �16� and �17� is symmetric with respect
to reflection: �0�−y�=�0�y�. However, in contrast to the
stable solutions �56�–�59�, the first two types of unstable so-
lutions are characterized by the property

d2�

dy2 �L� � 0,
d2�

dy2 �− L� � 0, �76�

which results in �0�0 �see Eq. �23��.
The first type of unstable solutions is represented by the

set �33�. Without loss of generality, it is sufficient to consider
the case of n=0,

��y� = � + 2 arcsin�k sn�y,k��, k = k�H�: k cn�L,k� = H .

�77�

Solution �77� exists in the field range 0�H�cosh−1 L. At
H=cosh−1 L, it becomes

��y� = 4 arctan exp y, y � �− L,L� . �78�

We emphasize that �78� is unstable for any L��, which
should be contrasted with the stable single-vortex solution in
an infinite interval, given by Eq. �68�. If L�� /2, solution
�77� at H=0 degenerates into �=�. In contrast, if L�� /2,
aside from the solution �=�, at H=0 there exists a non-
trivial solution,

��y� = � + 2 arcsin�km sn�y,km�� , �79�

where km is implicitly determined by �32�. Solution �77� is
presented in Fig. 4�a�.

Unstable solutions of the second type can be obtained by
prolonging solutions �56�–�59� beyond their respective sta-
bility regions �60� and �61�. Several examples of such solu-
tions are given in Fig. 4�b�.

Finally, unstable solutions of the third type do not obey
�75�. Therefore, the eigenfunction �0 in �16� and �17� does
not possess reflection symmetry: �0�−y���0�y�. These solu-
tions can be obtained from solutions �39� and �40�, taken at
the upper boundaries of their respective intervals of stability,
I2m with m=1,2 , . . ., and I2m+1 with m=0,1 ,2 , . . . �i.e., at the
bifurcation points k=kp, p=1,2 , . . .�, by a shift of the argu-
ment y→y−�k, where 
�
�K�k�. This results in the proper-
ties

d�

dy
�L� =

d�

dy
�− L� � 0,

d2�

dy2 �L� =
d2�

dy2 �− L� � 0.

�80�

Relation �23� yields �0�0, because �0�L���0�−L� for
d2� /dy2�±L��0, and �0�L���0�−L� for d2� /dy2�±L��0.
Examples of unstable solutions of the third type are pre-
sented in Fig. 4�c�.

VII. SUMMARY AND CONCLUSIONS

The main results of this paper can be summarized as fol-
lows: Mathematically, we have completely solved the ill-
posed boundary value problems �7� and �8� and presented an
exhaustive classification of the obtained solutions with re-
spect to their stability. Our exact analytical treatment of the
issue of stability can be easily extended to include more dif-
ficult cases, e.g., such as Eq. �7�, under more general bound-
ary conditions5 or a coupled system of static sine-Gordon
equations.13,14

Physically, the complete set of stable solutions �56�–�62�
gives a clear final answer to the question what should be
called the Meissner state and the vortex structure in Joseph-
son junctions for arbitrary W�� and 0�H��. We have
shown that the stability of physical solutions to �7� and �8� is
nothing but a consequence of soliton boundary conditions
�64� �or, equivalently, �65��. In particular, the stability condi-
tions �65� provide a simple, rigorous criterion to distinguish

FIG. 3. The average Gibbs free-energy density ��H�
	�G�H� /W for the cases of a “large” �L=3.0� junction �a� and a
“small” �L=0.3� junction �b�. Energy curves are shown for Nv
=0,1 , . . . ,6. The upper bound of the existence of the Meissner state
�H0� and the first thermodynamic critical field �Hc1� are also shown.
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between physical �stable� and unphysical �unstable� solu-
tions, which can be readily verified by comparing Fig. 2 with
Fig. 4.

To illustrate the difference between the results of our pa-
per and those of previous publications, we turn to a two-
parameter expression

��y� = � + 2 am
 y − y0

k
,k� . �81�

Proposed in the previous literature2–5,26 as an “exact vortex
solution,” expressions of the type �81� by no means can be
regarded as such in the absence of any explicit definition of
the constants of integration k, y0 and of stability regions. As
we have shown, aside from the Meissner solution �Eqs. �56�,
�57�, �60�, and �62� with Nv=0� and the actual vortex solu-
tions �Eqs. �56�–�62� with Nv=1,2 , . . .�, the two-parameter
family �81� contains absolutely unstable, unobservable solu-
tions of the second and the third types �see Sec. VI and Figs.
4�b� and 4�c��.

The reader should be warned against confusion between
the single-soliton solution in the infinite interval �1� �Eq.
�68�� and its restriction onto a finite interval, the saddle-point
solution �78� �curve 2 in Fig. 4�a��. Unfortunately, the un-
stable solution �78� is often erroneously interpreted in
literature10 as a “Josephson vortex.”

Historically, the single-soliton solution �1� served as the
first example of vortex solutions in Josephson structures.1

However, this solution cannot be realized experimentally in
any realistic �with W��� physical system. In this regard, we
want to emphasize once again that the actual physical single-
vortex solution is given by Eqs. �58�, �59�, �61�, and �62�
with Nv=1 �see also Fig. 2�b��.

Concerning saddle-point solutions, classified and dis-
cussed in Sec. VI, they may play a certain role as channels of
fluctuation-induced transitions from thermodynamically
metastable states �local minima of �3�� to a thermodynami-
cally stable state �an absolute minimum of �3��. �Compare
the decay of current-carrying states in narrow superconduct-
ing channels.27� However, this issue asks for further investi-
gation within the framework of a more general nonequilib-
rium approach.

Finally, as is pointed out in Refs. 13 and 14 and in the
Introduction, the exact analytical solutions �56�–�62� consti-
tute a new class of static topological solutions to the sine-
Gordon equations. We believe that they may find application
not only in superconductivity, but also in other fields of mod-
ern nonlinear physics that deal with sine-Gordon equations.
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APPENDIX: ANALYSIS OF STABILITY IN TWO
SINGULAR CASES

In this Appendix, we present an analysis of stability of the
Meissner solution �66� and the single-soliton solution �68�.
This analysis leads to singular Sturm-Liouville eigenvalue
problems,22 formulated on the intervals �0, +�� and �−� ,
+��, respectively.

FIG. 4. Unstable �saddle-point� solutions for L=3.0. �a� The
unstable solution of the first type: curves 1 and 2 correspond to the
cases H=0 and H=cosh−1 L, respectively. �b� Unstable solutions of
the second type: curves 1–3 correspond to different particular cases.
�c� Unstable solutions of the third type: curves 1 and 2 correspond
to different particular cases.
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1. Meissner solution in a semi-infinite interval

The Meissner solution �0� �Eq. �66�� that exists in the
field range 0�H�1 is a stationary point of the free-energy
functional,

�G���,
d�

dy
;H� = �

0

�

dy�1 − cos ��y� +
1

2
�d��y�

dy
�2�

− 2H��0� . �A1�

The second variation of Eq. �A1� at �=�0� has the form


2�G��
�,
d
�

dy
�

�=�0�

= �
0

�

dy�cos �0��y��
��y��2

+ �d
�

dy
�y��2� , �A2�

where the variation 
� has continuous first derivatives and
obeys boundary conditions

d
�

dy
�0� = 0, 
��+ �� = 0,

d
�

dy
�+ �� = 0. �A3�

At H=0, we have �0�	0, and Eq. �A2� immediately
yields 
2�G��0 for all allowed variations 
�. To evaluate
the sign of 
2�G� in the interval 0�H�1, we have to
evaluate the sign of the lowest eigenvalue �0 of the problem

−
d2�

dy2 + cos �0��y�� = ��, y � �0, + �� , �A4�

d�

dy
�0� = 0, ��+ �� = 0, �A5�

where the normalizable eigenfunction �0 has no nodes in the
interval �0, +�� and can be considered positive.

For �0, we have the following general relation �compare
with Eq. �23��

�0 = −

�0�0�
d2�0�

dy2 �0�

�
0

�

dy�0�y�
d�0�

dy
�y�

�A6�

that holds in the whole interval 0�H�1. The evaluation of
d2�0� /dy2�0� yields

d2�0�

dy2 �0� = −
2H

1 + �1 − H2
�1 + �1 − H2 − H2� . �A7�

According to Eq. �A7�, d2�0� /dy2�0��0 for 0�H�1, and
d2�0� /dy2�0�=0 for H=1. Taking into account that the de-
nominator in Eq. �A6� is positive �we are reminded that
�d�0� /dy�	2h�, we conclude that �0�0 for 0�H�1, and
�0=0 for H=1. Summarizing the results for H=0 and 0
�H�1, we state 
2�G��0 for 0�H�1, and 
2�G��0
for H=1.

2. Single-soliton solution in the infinite interval

The single-soliton solution �1� �Eq. �68�� that exists at
H=0 is a stationary point of the free-energy functional

���,
d�

dy
� = �

−�

�

dy�1 − cos ��y� +
1

2
�d��y�

dy
�2� .

�A8�

The standard analysis of 
2� at �=�1� requires evaluation
of the lowest eigenvalue �0 of the problem

−
d2�

dy2 + cos �1��y�� = ��, y � �− �, + �� , �A9�

��±�� = 0. �A10�

As usual, the normalizable eigenfunction �0 has no nodes in
the interval �−� , +��.

In this particular case, both �0 and �0 can be determined
explicitly. Indeed, the first derivative

��y� 	
d�1�

dy
�y� =

2

cosh y
, y � �− �, + �� �A11�

has no nodes and satisfies boundary conditions ��±��=0.
Moreover, it obeys the equation

−
d2�

dy2 + cos �1��y�� = 0, y � �− �, + �� . �A12�

Upon a comparison with Eqs. �A9� and �A10�, we conclude
that

�0�y� = const cosh−1 y, �0 = 0. �A13�

Thus, 
2��0 for �=�1�, and the single-soliton solution
�68� corresponds to a bifurcation state. In view of translation
symmetry of the problem, a shift of the argument y→y−y0,

y0
�� does not affect the stability of the single-soliton so-
lution �1�, which should be contrasted with the situation for
soliton solutions in the bifurcation state in the case of a finite
interval �−L ,L�: see the last paragraph of Sec. VI and Fig.
4�c�.
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