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A theory has been developed to explain the anomalous behavior of the magnetic susceptibility of
a normal metal–superconductor �NS� structure in weak magnetic fields at millikelvin tempera-
tures. The effect was discovered experimentally �A. C. Mota et al., Phys. Rev. Lett. 65, 1514
�1990��. In cylindrical superconducting samples covered with a thin normal pure metal layer, the
susceptibility exhibited a reentrant effect: it started to increase unexpectedly when the tempera-
ture was lowered below 100 mK. The effect was observed in mesoscopic NS structures when the
N and S metals were in good electric contact. The theory proposed is essentially based on the
properties of the Andreev levels in the normal metal. When the magnetic field �or temperature�
changes, each of the Andreev levels coincides from time to time with the chemical potential of
the metal. As a result, the state of the NS structure experiences strong degeneracy, and the quasi-
particle density of states exhibits resonance spikes. This generates a large paramagnetic contribu-
tion to the susceptibility, which adds to the diamagnetic contribution, thus leading to the reen-
trant effect. The explanation proposed was obtained within the model of free electrons. The
theory provides a good description of the experimental results. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2215369�

I. INTRODUCTION

Mesoscopic systems1–3 can exhibit surprising properties
at comparatively low temperatures. For pure normal metals
there is a length scale �N= �VF /kBT �VF is the Fermi veloc-
ity, T is the temperature, kB is the Boltzmann constant� which
has the meaning of a coherence length in a system with a
disturbed long-range order. When this length is comparable
with the characteristic dimensions of the system, the interfer-
ence effects can come into play. Theoretically this was first
demonstrated by Kulik4 for a thin-wall normal pure-metal
cylinder in the vector potential field. It appears that the mag-
netic moment of such a system is an oscillating function of
the magnetic flux through the cross section of the cylinder,
the oscillation period being equal to the flux quantum of the
normal metal hc /e. The effect is generated by quantization
of the electron motion and is due to the sensitivity of the
states of the system to the vector potential field �Aharonov–
Bohm effect�.5 Bogachek and this author showed the exis-
tence of an oscillating component with the period hc /e in the
magnetic moment of a singly connected normal cylinder in a
weak magnetic field. Oscillations with this period are pro-
duced by the magnetic surface levels of the cylindrical
sample in a weak magnetic field.6 The effect of flux quanti-
zation in a normal singly connected cylindrical conductor
was first detected experimentally in 1976 by Brandt et al.
when they were investigating the longitudinal magnetoresis-
tance in pure Bi single crystals.7,8 This was actually the first
observation of the interference effect of flux quantization in
nonsuperconducting condensed matter.

Recent advanced technologies of preparation of pure
samples have enabled investigation of the coherence proper-
ties of mesoscopic structures taking proper account of the
proximity effect.9 The samples were superconducting Nb

wires with a radius R of tens of �m coated with a thin layer
d of high-purity Cu or Ag. The metals were in good contact
and the electron mean free path exceeded the typical scale
�N. The magnetic susceptibilities of copper and silver were
measured. The breakdown field Hb, the supercooled field Hsc

and the superheated field Hsh were estimated as functions of
temperature and normal metal thickness. While continuing
their experiments on these samples, Mota and co-workers10

detected surprising behavior of the magnetic susceptibility of
a cylindrical NS structure �N and S are for the normal metal
and the superconductor, respectively� at very low tempera-
tures �T�100 mK� in an external magnetic field parallel to
the NS boundary.

Most intriguingly, a decrease in the sample temperature
below a certain point Tr �at a fixed field� produced a reen-
trant effect: the decreasing magnetic susceptibility of the
structure unexpectedly started growing. A similar behavior
was observed with the isothermal reentrant effect in a field
decreasing to a certain value Hr below which the suscepti-
bility started to grow sharply. It is emphasized in Ref. 11 that
the detected magnetic response of the NS structure is similar
to the properties of the persistent currents in mesoscopic nor-
mal rings. It is assumed9–12 that the reentrant effect reflects
the behavior of the total susceptibility � of the NS structure:
the paramagnetic contribution is superimposed on the
Meissner-effect-related diamagnetic contribution and nearly
compensates it. Anomalous behavior of the susceptibility has
also been observed in AgTa, CuNb, and AuNb
structures.11,13

The reentrant effect revealed by Mota et al. is of great
interest in the physics of the quantum proximity effect in NS
sandwiches of ring geometry. We believe that the effect is
not restricted only to NS structures with the ordinary
electron–phonon interaction in the superconductors. A modi-
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fication of the reentrant effect can well be expected if in
place of Nb and Ta, high-Tc-superconductors with another
type of pairing are used.

The possibility of the paramagnetic contribution to the
susceptibility of the NS structure needs further clarification.
The NS structure in question is essentially a combination of
two subsystems capable of electron exchange, which corre-
sponds to the establishment of equilibrium in a grand canoni-
cal ensemble �with fixed chemical potential�. Assume that
these systems are initially isolated with a thick dielectric
layer. It is known that the superconductor response to the
applied magnetic field generates superfluid screening current
near the cylinder surface �Meissner effect�. How does the
normal mesoscopic layer respond to the weak magnetic
field? Kulik4 shows �see above� that in a weak magnetic field
the magnetic moment of a thin-wall normal cylinder oscil-
lates with the flux. The magnetic moment oscillations are
equivalent to the existence of persistent current. Since the
energies of the individual states and hence, the total energy
are dependent on the flux, the average current is nonzero.
The current state corresponds to the minimum free energy,
therefore the inclusion of weak dissipation would not lead to
the decay of the current state. When the N and S metals are
isolated, the quantum states of the quasiparticles in the N
metal are formed at the expense of specular reflection of the
electrons from the dielectric boundaries. The amplitude of
the magnetic moment oscillations in the N layer is small,
which is determined by the smallness of the parameter 1 /kFR
in the problem and by the paramagnetic character of the per-
sistent current4,6 �when the magnetic field tends to zero, the
magnetic susceptibility is positive�. Thus, in the absence of
the proximity effect, the total susceptibility of the NS struc-
ture is only governed by the diamagnetic contribution of the
S layer �the paramagnetic contribution is very small�.

When the proximity effect is present in the NS structure,
we assume that the probability of the electron transit from
the superconductor to the N metal is close to unity. This
significantly affects the properties of the NS structure. The
diamagnetic response of the superconductor persists but new
properties appear, that are brought about by the proximity
effect. Now two kinds of electron reflection are observed in
the normal film—a specular reflection from one boundary
and the Andreev reflection from other. Along with the trajec-
tories closed around the cylinder circle, new trajectories ap-
pear in a weak field, which “screen” the normal metal. The
new trajectories of “particles” and “holes” confine the quan-
tization area of the triangle whose base is a part of the NS
boundary between the points of at which the quasiparticle
collides with this boundary. This area is maximum for the
trajectories touching the superconductor. It is shown below
that at certain values of the flux through the triangle area, the
electron density of states experiences flux-dependent reso-
nance spikes. Thus, in the presence of the proximity effect,
the periodic flux-induced oscillations of the thermodynamic
values typical of the normal layer in the NS structure give
way to periodic resonance spikes with a period equal to a
superconducting flux quantum hc /2e.16 The response of the

normal mesoscopic layer to a weak magnetic field �H
�10 Oe� is paramagnetic and the susceptibility amplitude is
large. The picture, however, changes when the quantized
magnetic flux through the triangle area increases and its
value divided by hc /2e starts to exceed the highest Andreev
“subband” number. A phase transition occurs at a certain
field Hr. As a result, the N layer is now screened only by the
trajectories of those quasiparticles that do not collide with
the superconducting boundary. Their amplitudes are rather
small �see above� against the large diamagnetic response. We
can thus conclude that the resonance contribution to the para-
magnetic susceptibility of the NS structure can only appear
in comparatively weak magnetic fields. At this condition the
reentrant effect may be generated. The conclusion correlates
well with the experimental observations.9–14

The origin of paramagnetic currents in NS structures has
been discussed in several theoretical publications. Bruder
and Imry17 analyze the paramagnetic contribution to suscep-
tibility made by quasiclassical �“glancing”� trajectories of
quasiparticles that do not collide with the superconducting
boundary. The authors17 point to a large paramagnetic effect
within their physical model. However, their ratio between the
paramagnetic and diamagnetic contributions is rather low
and cannot account for the experimental results.9–14

Fauchere, Belzig, and Blatter18 explain the large para-
magnetic effect assuming a pure repulsive electron–electron
interaction in noble metals. The proximity effect in the N
metal induces an order parameter whose phase is shifted by
� from the order parameter � of the superconductor. This
generates the paramagnetic instability of the Andreev states,
and the density of states of the NS structure exhibits a single
peak near the zero energy. The theory in Ref. 18 essentially
rests on the assumption of the repulsive electron interaction
in the N metal. Is the reentrant effect a result of specific
properties of noble metals, or does it display the behavior of
any normal metal experiencing the proximity effect from the
neighboring superconductor? Only experiment can provide
answers to these questions. We just note that the theories of
Refs. 17 and 18 do not account for the temperature and field
dependences of the paramagnetic susceptibility and the non-
linear behavior � of the NS structure. The current theories
cannot explain the origin of the anomalously large paramag-
netic reentrant susceptibility in the region of very low tem-
peratures and weak magnetic fields.

It is worth mentioning the assumption made by Maki
and Haas19 that below the transition temperature ��10 mK�
some noble metals �Cu, Ag, Au� can exhibit p-ware super-
conducting ordering, which may be responsible for the reen-
trant effect. This theory does not explain the high paramag-
netic reentrant effect either.

In this paper a theory of the reentrant effect is proposed
which is essentially based on the properties of the quantized
levels of the NS structure. Levels with energies no more than
� �2� is the gap of the superconductor� appear inside the
normal metal bounded by the dielectric �vacuum� on one side
and contacting the superconductor on the other side. The
number of levels n0 in the well is finite. Because of the
Aharonov–Bohn effect,5 the spectrum of the NS structure is a
function of the magnetic flux in a weak field. The specific
feature of the quantum levels of the structure is that in a
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varying field H �or temperature T� each level in the well
periodically comes into coincidence with the chemical poten-
tial � of the metal. As a result, the state of the system suffers
strong degeneracy, and the density of states of the NS sample
experiences resonance spikes.

It is shown that the phenomenon of resonance appears in
a certain interval of weak magnetic fields at temperatures no
higher than a hundred of millikelvins. Resonance is realiz-
able only in pure mesoscopic N layers under the condition of
the Aharonov–Bohm effect. The resonance produces a large
paramagnetic contribution �p to the susceptibility of the NS
structure. When �p is added to the diamagnetic contribution
�d produced by the Meissner effect, the total susceptibility
displays the features of the reentrant effect.20

II. SPECTRUM OF QUASIPARTICLES OF THE NS
STRUCTURE

Consider a superconducting cylinder with the radius R
which is covered with a thin layer d of a pure normal metal.
The structure is placed in a weak magnetic field H�0,0 ,H�
oriented along the symmetry axis of the structure. It is as-
sumed that the field is weak to an extent that the effect of
twisting of quasiparticle trajectories becomes negligible. It
actually reduces to the Aharonov–Bohm effect,5 i.e., allows
for the increment in the phase of the wave function of the
quasiparticle moving along its trajectory in the vector poten-
tial field.

We proceed from a simplified model of NS structure in
which the order parameter magnitude changes stepwise at the
NS boundary. It is also assumed that the magnetic field does
not penetrate into the superconductor. The coherent proper-
ties observed in the pure normal metal can be attributed to its
large “coherence” length �N at very low temperatures.

One can easily distinguish two classes of trajectories in-
side the normal metal. One of them includes the trajectories
which collide in succession with the dielectric and NS
boundaries. The quasiparticles moving along these trajecto-
ries have energies 	�� and are localized inside the potential
well bounded by a high dielectric barrier ��1 eV� on one
side and by the superconducting gap � on the other side. On
its collisions, the quasiparticle is reflected specularly from
the dielectric and experiences the Andreev scattering at the
NS boundary.15 We introduce an angle 
 at which the quasi-
particle hits the dielectric boundary. The angle is measured
from the positive direction of the normal to the boundary
�Fig. 1�. In this case the first class contains the trajectories
with 
 varying within 0�
�
c �
c is the angle at which
the trajectory touches the NS boundary�. The other class in-
cludes the trajectories whose spectra are formed by collisions
with the dielectric only, i.e., the trajectories with 
�
c.

The two groups of trajectories produce significantly dif-
ferent spectra of quasiparticles. The distinctions are particu-
larly obvious in the presence of the magnetic field. The tra-
jectories with 
�
c form a spectrum of Andreev levels
which contains a supplement in the form of an integral of the
vector potential field. The spectrum characterizes the mag-
netic flux through the area of the triangle between the qua-
siparticle trajectory and the part of the NS boundary. It is
also determines the magnitude of the screening current pro-

duced by “particles” and “holes” in the N layer. These states
are responsible for the reentrant effect. The trajectories with

�
c do not collide with the NS boundary. The states in-
duced by these trajectories are practically similar to the
“whispering gallery” type of states appearing in the cross
section of a solid normal cylinder in a weak magnetic
field.6,21 The size of the caustic of these trajectories is of the
order of the cylinder radius, i.e., they correspond to high
magnetic quantum numbers m. The spectrum thus formed
carries no information about the parameters of the supercon-
ductor, and it is impossible to meet the resonance condition
in this case. These states make a paramagnetic contribution
to the thermodynamics of the NS structure but their ampli-
tude is small ��1/kFR�. It is therefore discarded from further
consideration. Our interest will be concentrated on the tra-
jectories with 
�
c.

The spectrum of quasiparticles of the NS structure can
be obtained easily using the multidimensional quasiclassical
method generalized for the case of the Andreev scattering in
the system.16,22 After collision with the NS boundary the
“particle” transforms into a “hole.” The “hole” travels prac-
tically along the path of the “particle” but in the reverse
direction. In the strict sense, however, the path of the “hole”
is somewhat longer because under the condition of Andreev
elastic scattering the momentum of the “particle ” exceeds
that of the reflected “hole.” According to the law of conser-
vation of the angular momentum, the angle 
� at which the
“hole” comes up to the dielectric boundary and hence the
distance covered by the “hole” are larger. Eventually, the
trajectory of the quasiparticle becomes closed due to its dis-
placement along the perimeter of the N layer. However, as
the quasiparticle energy decreases and approaches the value
of the chemical potential, the difference 
−
� starts tending
to zero. Since our further interest is concerned with low-
lying Andreev levels, we assume that the “hole” trajectory is
strictly reversible. The distance covered by the “particle”
�“hole”� between two boundaries is L0�2d / cos 
.

FIG. 1. Two classes of trajectories in the normal metal of an NS structure in
a magnetic field: trajectories forming the Andreev levels �a�; trajectories
colliding only with the dielectric boundary �b�.
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According to the multidimensional quasiclassical
method,16,22 there are two congruences of “particle” rays —
towards the dielectric �I� and in the opposite direction �II�.
There are also two congruences of “hole” rays — towards
the NS boundary �III� and away from it �IV�. The covering
space is constructed of four similar NS structures whose
edges are joined in accordance with the law of quasiparticle
reflection from a dielectric and a NS boundary. At the dielec-
tric boundary the congruences I and II are joined. The con-
gruences III and IV are joined independently. The covering
space consists of the outer �“particles”� and inner �“holes”�
toroidal surfaces. Each surface contains only a part of the
single independent integration contour. The path of the “par-
ticle ” is 2d. The “hole” travels the same length, whereupon
the trajectory of the quasiparticle closes. The total length of
the closed contour along the covering surface of the NS
structure is 4d.

It is possible to choose two independent integration con-
tours within a torus that do not contract into a point. One
condition of quantization relates the caustic radius to the
magnetic quantum number m. We replace it with an angle of
incidence of the quasiparticle on the dielectric boundary. The
other condition of quantization introduces the radial quantum
number n. Thus, the complete set of quantum numbers de-
scribing the motion of the quasiparticle includes n, 
, q,
where q is the quasimomentum component along the sym-
metry axis of the cylinder.

Assume that the condition d�R is obeyed for the NS
structure. We can then neglect the curvature of the cylinder
boundary and assume that it is flat. The condition of quasi-
classical quantization can be written as

�
L0

�p0 −
	e	
c

A
ds − �
L0

�p1 +
	e	
c

A
ds

=2� � �n + 1 −
1

�
arccos 	/�
 �1�

where p0�p1� are the quasimomentum of the “particle”
�“hole”�, 	 is the “quasiparticle” energy, A is the vector po-
tential �0,0 ,Hy�, and 	L0	 is the trajectory length covered by
the “particle” �“hole”�. The unity in the right-hand side of
Eq. �1� appears when two collisions of the quasiparticle with
the dielectric boundary are taken into account.22 The term
�arcos 	 /�� /� accounts for the phase delay of the wave
function under the Andreev scattering of quasiparticles.16

The quasimomentum p0 and p1 in Eq. �1� can be expanded in
the parameter 	 /
 retaining the first-order terms and replac-
ing n−1 by n. As a result, Eq. �1� furnishes the desired

spectrum of the NS structure in a weak magnetic field �L is
the quasiparticle trajectory�:

	n�q,
;�� =
� � vL�q�cos 


2d
�n +

1

�
arccos

	

�
−

tan 


�
�
 .

�2�

Here vL�q�=�pF
2 −q2 /m*, pF is the Fermi momentum, q is

the quasiparticle momentum component along the cylinder
axis, m* is the effective mass of the quasiparticle, and �0

=hc /2e is the superconducting flux quantum. The positive 

values refer to “particles” �n�0�, while the negative ones
are for “holes” �n�0�.

The last term in Eq. �2� has the meaning of “phase”

� =
2�

�0
�

0

d

A�x�dx , �3�

which is dependent on the vector potential field and varies
with the angle 
 characterizing the trajectory of the quasi-
particle.

The spectrum of Eq. �2� is similar to Kulik’s spectrum23

for the current state of an SNS contact. However, Eq. �2�
includes an angle-dependent magnetic flux instead of the
phase difference of the contacting superconductors.

The value of the “phase” �flux� controls the diamagnetic
and paramagnetic currents in the NS structure. To calculate
it, we should know the distribution of the vector potential
field inside the normal metal.

The problem of the Meissner effect in superconductor–
normal metal �proximity� sandwiches was solved by
Zaikin.24 It was shown that the proximity effect caused the
Meissner effect bringing an inhomogeneous distribution of
the vector potential field over the N layer of the structure:
A�x�=Hx+ �4� /c�j�a�x�d−x /2�. For convenience we intro-
duce the notation a=�0

dA�x�dx. This expression can be ob-
tained from the Maxwell equation curl H= �4� /c�j with the
boundary conditions A�x=0�=0 and �xA�x=d�=H. The
screening �diamagnetic� current j is a function of a, j�a�
=−js��a /�0�, where js is the superfluid current and ��x� is
the flux function. Thus, we can write down the self-
consistent equation for a:25,26

a =
Hd2

2
+

4�

3c
j�a�d3. �4�

The diamagnetic current jd�a� was calculated in terms of
the microscopic theory as a sum of currents of quasiparticles
�“particles” and “holes”� for all quasiclassical trajectories
characterized by the angles � and �24,26 �below the system of
units kB= � =c=1 is used�:

jd��,T� = − AT 

�n�0

�
0

�/2

d��
0

�/2 sin2 � cos � sin�2� tan � cos ��

���2 + �2

�
sinh 
n +

�n

�
cosh 
n�2

+ cos2�� tan � cos ��

d� , �5�
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where A=2ekF
2 /�2, �n= �2n+1��T, 2� is the supercon-

ductor gap, 
n=2�nd /vFcos �, and � is given by Eq. �3�.
The function jd��� is noted for interesting features. In small
magnetic fields ���1�jd�−js�. Such low fields can lead to
the effect of extra screening of the external magnetic field
�see Ref. 24�. When the field increases ���1�, the current
starts oscillating and for certain “phases” it turns to zero at
regular intervals “phases” �. With high values of the in-
equality ���1�, the current amplitude decreases.

III. RESONANCE SPIKES IN THE DENSITY OF STATES OF
NS STRUCTURES IN WEAK MAGNETIC FIELDS

In the region of weak magnetic fields, the density of
states of the quasiparticles that are described by the spectrum
of Eq. �2� exhibits sharp singularities. The spectrum of Eq.
�2� is formed by the trajectories of the quasiparticles which
collide with the dielectric and superconducting boundaries. It
encloses a certain area penetrated by a magnetic flux. At any
instant when the magnetic flux becomes a multiple of the
superconducting flux quantum, the density of states experi-
ences resonance spikes.

Let us consider the cross section of a NS structure. As-
sume that the superconducting cylinder radius R and the nor-
mal layer thickness d have a mesoscopic scale. The density
of states ��	� can be calculated proceeding from the expres-
sion

��	� = 

n,
,�

� dq��	 − 	n�q,
�� . �6�

The summation is taken over all quantum numbers n, q, 

and spin �. Since we are not interested in the contribution
from the states formed by the trajectories of the quasiparti-
cles with 
�
c, we can write down

��	� = �
−
C


C

d
��	;
� , �7�

where ��	 ;
� is the contribution to the density of states from
the pre-assigned trajectory with a fixed 
. Equation �2� for
the low-lying Andreev levels �	��� is taken as a spectrum.
After integration with respect to q and introduction of the
notation �=�� /2dm*, we can pass on to the dimensionless
energy 	=	 /�pF. For ��	 ,
� we have the expression

��	,
� =
2pF

�2�d
	2


n

sec2 
��	n + �	 − 	 sec 
�

�n + ��2��n + ��2 − 	2sec2 

, �8�

where �=1/2−� tan 
 /�, and ��x� is the Heaviside step
function. Equation �8� suggests two cases depending on the
parameter n+�.

a. Nonresonance case. If n+��0, the energy depen-
dence under the radical sign in Eq. �8� can be neglected for
small energies �	→0�. Then, the nonresonance contribution
to the density of states is

��0� �
2pF

�2�d
	2�

0


c

d
 

n=−�

+�
sec2 


�n + ��3 . �9�

The series in Eq. �9� is calculated readily by the formula in
Ref. 27:



k=−�

+�
1

�k − ��n = �− 1�n−1 �

�n − 1�!
dn−1

d�n−1 cotg �� .

After calculation of the integral we obtain

��0� �
pF

�d
	2�0

a
tan2�2�a

�0
�2R

d
� , �10�

where �2R /d� tan 
c.
b. Resonance case. Now we go back to Eq. �8�. We find

�res as

vres � 	2�
0


C

d


n

sec2 
��	an − b tan 
	 − 	 sec 
�

	an − b tan 
	2�	an − b tan 
	2 − 	2sec2 


�11�

where the notation an=n+1/2, b=2a /�0 is introduced.
Equation �11� shows that at certain values of the flux �b�, the
radicand in the denominator turns to zero.

Prior to calculation of �res, let us discuss the question of
the contribution of different angles 
 to the resonance am-
plitude. It is reasonable to assume that because of the factor
sec2 
 in the numerator of Eq. �11�, the angles 
�
c are the
main contributors to the integral. It is convenient to employ
in the integral a new variable of integration x=tan 
. Then
the neighborhood of the upper limit x0=tan 
c is the main
contributor to the integral. Introducing the notation ã=an

−bx0 and the small deviation �=x0−x�1, we can write
down the equation for the resonance condition as:

�b2 − 	2��2 + 2�ãb̆ + 	2x0�� + ã2 − 	2�1 + x0
2� = 0. �12�

The point of our interest is the asymptotics of ��	� at
low 	→0. Eq. �12� is solved to the accuracy within first-
order terms of 			:

�1,2 �
ã

b
+

			
b

�1 − x0
2. �13�

The expression in front of the radical in the denominator
of Eq. �11� is of second order smallness in 			, i.e., 	ã	2
� 			2�1+x0

2�, which leads to its cancellation with the similar
small parameter in the numerator.

The remaining integral is estimated to be a constant of
about unity. A resonance-induced spike of the density of
states always appears when the Andreev level coincides with
the Fermi energy at a certain flux in the N layer. In the
vicinity of the chemical potential there is a strong degen-
eracy of the quasiparticle states with respect to the quantum
number q. As a result, a macroscopic number of q states
contribute to the amplitude of the effect. Near the resonance,
the ratio of the resonance and nonresonance amplitudes of
the density of states is

�res

��0� �
1

			2
� 1. �14�

Thus it is shown that a change in the magnetic flux leads
to resonance spikes in the density of states of the NS struc-
ture. The flux interval between the spikes is equal to the
superconducting flux quantum �0.
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IV. CALCULATION OF SUSCEPTIBILITY OF AN NS
CONTACT

To explain the reentrant effect, we need to have an ex-
pression for the susceptibility of the NS structure. We as-
sume that in a weak magnetic field the total susceptibility of
the NS sample consists of two contributions. First, the re-
sponse of the superconductor to the applied magnetic field
generates the Meissner effect. Note that the diamagnetic re-
sponse is observed in all fields up to the critical field. The
amplitude of the diamagnetic current increases monoto-
nously with lowering temperature. On the other hand, the
presence of a pure normal metal in the NS structure produces
a paramagnetic contribution. In a weak magnetic field the
contribution is due to the Aharonov–Bohm effect and the
quantization of the quasiparticle spectrum of the mesoscopic
system. When the penetrability of the barrier between the
metals is small, the electrons of the normal metal are re-
flected specularly from its boundaries. As compared to the
diamagnetic contribution from the superconductor, the para-
magnetic contribution produced by the N layer has a small
amplitude and can therefore be neglected. Thus, the para-
magnetic and diamagnetic contributions cannot compete in
the absence of the proximity effect in the NS structure. How-
ever, if the penetrability of the barrier is close to unity, the
mechanism of the Andreev reflection becomes active at the
NS boundary. The quasiparticle spectrum of the N layer un-
dergoes a significant transformation, and resonance spikes
appear in the amplitude of the density of states in a certain
regions of magnetic fields and temperatures. Simultaneously,
the distribution of the vector potential field in the normal
layer becomes inhomogeneous. As shown below at certain
values of the parameters of the problem, the paramagnetic
contribution to the susceptibility of the NS structure can be-
come equal to the diamagnetic contribution. This is the rea-
son why the reentrant effect appears in pure mesoscopic NS
structures.

Theoretically, the resulting susceptibility including the
reentrant effect can be represented as a sum of the paramag-
netic contribution �p of the NS structure caused by the An-
dreev scattering and the diamagnetic susceptibility �d of the
system in which there is no proximity effect between the N
and S metals. The temperature-induced behavior of the dia-
magnetic current in such a system is well known. As the
temperature decreases, the diamagnetic current amplitude in-
creases and becomes saturated at temperatures about several
millikelvins. At high temperatures kBT� �VF /d, the dia-
magnetic current decreases rapidly following the law j
�T−1exp�−4�kBTd / �VF�. Note that in a NS structure in
which the electrons are reflected specularly at both bound-
aries of the normal metal, the susceptibility is negative �i.e.,
diamagnetic� in the whole interval of temperatures 0�T
�Tc. However, we will not use this approach to estimate the
resulting susceptibility. Below we calculate the screening
current of the NS structure. It naturally allows for the para-
magnetic contribution at certain values of the magnetic field
and temperature. We focus our attention on calculation of the
paramagnetic contribution in structures with a pronounced
proximity effect. This is important especially in the context
of the recent statement28 that no paramagnetic reentrance can

occur in NS proximity cylinders in the absence of electron–
electron interaction in the N layer.

Paramagnetic susceptibility of NS contact

The contribution of the states in Eq. �2� to the paramag-
netic susceptibility of the normal layer in a NS contact can
be calculated proceeding from the expression for the thermo-
dynamic potential �kB=1�

� = − T 

n,q,


�

ln �1 + exp�− 	n�q,
�/T�� , �15�

where the summation is taken over the spin ��� and all the
states related to the trajectories of the quasiparticles with a
�ac. The expression for susceptibility �per unit volume V of
the normal metal� is found using the formula

� = −
1

V

�2�

�H2 .

After performing the summation over the spin and taking
into account two signs of the angle 
 and of the quasimo-
mentum component q, we arrive at the initial expression for
paramagnetic susceptibility �
 is the chemical potential of the
metal�:

� =
d

2Tm*2�0
2�

−


� d	 exp�	/T�
�exp�	/T� + 1�2


n
�

0


C

d
 cos 
 sin2 


��
0

pF

dq�pF
2 − �2�3/2��	 − 	n�q,
�� . �16�

In Ref. 20 we lost one of the radicals �pF
2 −q2�1/2 in the simi-

lar initial expression for �. As a result, the amplitude of the
paramagnetic contribution appeared to be underestimated.
This mistake is corrected in this work.

It is convenient to present the spectrum in terms of �
=�� /2m*d and �= 1

2 − tan 

� � as

	n�q,
� = � cos 
�n + ���pF
2 − q2.

Now we introduce the dimensionless energy 	=	 / ��pF�
=	 /�	, �	=��VF / �2d� is the distance between the Andreev
levels in the SN structure. Since 
 /�	�1, the lower limit of
the energy integral can be replaced with −�. By introducing
the variable x=tan 
 and the notation an=n+1/2, b
=b�H ,T�=2a /�0,

a = �
0

d

A�x�dx, x0 = tan 
0 = �2R/d ,

and taking into account the parity of the integrand we obtain,
instead of Eq. �16�:

� = C�
0

� 	4d	

cosh2��	/2�
n=0

n0 �
0

x0 x2dx

�an − bx�4

�
��a� − bx − ��1 + x2�

��an − bx�2 − 	2�1 + x2�
. �17�

In Eq. �17� the summation is taken over the quantum
numbers of the “particles.” Here C=
2d /T�0

2, �=�	 /T, n0 is
the number of Andreev levels in the potential well, and � is
the Heaviside step function. It is seen in Eq. �17� that for the
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given “subzone” n the amplitude of the paramagnetic suscep-
tibility increases sharply whenever the Andreev level coin-
cides with the chemical potential of the metal. The resonant
spike of susceptibility occurs when an−bx tends to zero on a
change in the magnetic field �or temperature�. Because of the
finite number of Andreev levels, the existence region of the
isothermal reentrant effect is within 0�H�Hmax.

Let us calculate the integral over x in Eq. �17�. It con-
tains a singularity under the radical R�x�=�Ax2+Bx−C,
where A=b2−	2, B=−2anb, C=an

2−	2. The singularity is de-
termined by the roots of the quadratic equation

x1,2 =
anb

b2 − 	2 ±
			

b2 − 	2
�b2 − an

2 − 	2.

On introducing the notation 
0=an /b, the expression for
the roots can be written with a linear accuracy with respect to
	 as

x1,2 � 
0 ±
			
b

�1 + 
0
2. �18�

The main contribution to the integral over x, Eq. �17�, is
made by the vicinity of the point 	→0. If we exclude the
singular points from the interval of integration, the indefinite
integral over x can be calculated accurately �see the details in
the Appendix �. Because the � function is present under the
integral, the integration intervals �0,x1� and �x2 ,x0� make a
finite contribution to the integral. On substituting the limits
of integration, the expressions obtained have different pow-
ers of the parameter 			−1. We retain only the most important
terms in order 			−4 that determine amplitude of the effect.
The discarded terms have higher orders of 	-smallness. The
intervals �0,x1� and �x2 ,x0� make contributions of the same
order of 	-magnitude. The region �x1 ,x2� does not contribute
to the integral at all.

The estimate for the integral over x is

4

3


0
2

b�1 + 
0
2�2

1

	4 . �19�

On substituting Eq. �19� into Eq. �17�, the parameter 	4 drops
out of the energy integral and we can take it quite easily.
Taking into account the energy limits ��an− 		 	 � appearing in
the process of calculation we can obtain the expression for
the paramagnetic contribution to the susceptibility of the NS
structure, which in dimensional units has the form

�p �
16
2d2

3�hVF�0
2 


n=0

n0 b�H,T�tanh� �hVF

4dkBT
�n + 1/2��

�n + 1/2�2�1 + �b�H,T�
n + 1/2


2�2 . �20�

In Eq. �20� the summation over the quantum number n is
taken within finite limits, where n0 has the meaning of the
maximum number of the Andreev levels inside the potential
well of the NS structure. Its order of magnitude in n0

�� /�	, where �	 is the distance between the Andreev lev-
els, �	=��VF /2d, and 2� is the energy gap. The flux
b�H ,T�=2a /�0 depends on both the magnetic field and tem-
perature. In the pre-assigned field its value is dictated by the
screening current of the NS structure j=−js��a /�0� �see Eq.

�4��. The obtained expression for �p manifests a more rapid
decrease susceptibility on increasing parameter b�H ,T� than
was evidenced by Eq. �5� in Ref. 20.

We first discuss the isothermal case of a very low tem-
perature and clear up the qualitative behavior of susceptibil-
ity in Eq. �20�. We shall proceed from the region of very
strong magnetic fields �a /�0�1� in which the second term
in Eq. �4� is negligible. Then the dimensionless flux
b�H ,T��1 and the amplitude of the paramagnetic contribu-
tion in Eq. �20� decreases as b�H ,T� raised to the power 3. In
comparatively weak magnetic fields �a /�0�1� the function
��x� is actually an oscillating function of H, and here we can
expect the reentrant effect. Indeed as the field decreases to a
certain value and the parameter b�H ,T� /n0 becomes �1 �n0

is the number of the Andreev levels in the potential well�, the
amplitude of the paramagnetic susceptibility of the NS struc-
ture accepts for the first time an appreciable contribution
from the highest Andreev “subband” �level�. On a further
decrease in this field, the contribution from the highest “sub-
band” persists, but in a certain lower field an additional con-
tribution appears from the neighboring lower-lying “sub-
band” n0−1. Finally, in a very weak field all the “subbands”
of the NS structure start to contribute and the paramagnetic
susceptibility amplitude reaches its peak. However, at H
→0�a /�0→0�, the paramagnetic contribution turns to zero,
as follows from Eq.�20�. The reason is that the resonance
condition for the Andreev levels �Eq. �2�� cannot be realized
at zero field.

Now we change to the case when the temperature of the
NS structure varies but the field is kept constant. We assume
the field to be weak �H�2�10−1 Oe�. The second term in
Eq. �4� for the flux is very important. It is highest at mil-
likelvin temperatures. As a result, the parameter b�H ,T� has
the lowest value. In this temperature region the hyperbolic
tangent is close to unity and the paramagnetic contribution is
dependent only on the parameter b�H ,T�. Under this condi-
tion, all the “subbands” of the NS structure contribute to the
amplitude of the effect. As the temperature rises, the param-
eter b�H ,T� increases smoothly. Simultaneously, the argu-
ment of the hyperbolic tangent decreases. At a certain tem-
perature, when the condition kBT���VF /4d is met, the
contribution from the lowest “subband” starts dying down
and its amplitude is decreasing linearly with growing T. On a
further rise of the temperature, the contributions from the
higher “subbands” of the spectrum die down in succession.
Finally, at a very high temperature the paramagnetic contri-
bution tends to zero.

Let us estimate the amplitude of the paramagnetic con-
tribution. The parameter b�H ,T� is dependent on the value of
the flux a=�0

dA�x�dx, which at constant T can be found by
solving the self-consistent equation Eq. �4�. In the region of
millikelvin temperatures and magnetic fields H�2
�10−1 Oe the paramagnetic contribution has the largest am-
plitude. We obtain b�H ,T��10−4 in this region of T and H.
The coefficient before the sum in Eq. �20� can be found by
substituting 
Ag�8.75�10−12 erg, d=3.3�10−4 cm, and
VF

Ag�1.39�108 cm/s for the characteristic parameters of
the normal Ag layer. We thus obtain 16
2d2 /3��VF�0

2

�2.418�103. The product of this coefficient and the param-
eter b�H ,T� yields the order of magnitude of the paramag-
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netic contribution amplitude. It is seen that the largest am-
plitude of the paramagnetic contribution exceeds that of the
diamagnetic contribution in the vicinity of T=0.

Full magnetic susceptibility of NS structure in the presence
of the proximity effect

Let us consider a structure in which the electrons expe-
rience Andreev scattering at the NS boundary. In the pres-
ence of magnetic field, a screening current is induced in the
normal layer due to the Meissner effect. We estimate the
susceptibility generated by this current.

The total current J is related to the magnetic moment M
as

M =
1

c
JS0, �21�

where S0��R2 is the cylinder cross section �d�R�. Let the
average current density be j. The total current is then J=Sj,
where S=dL �L is the cylinder generatrix�. The density of the
screening current in NS proximity sandwiches was calcu-
lated by Zaikin.24,28 We reproduce the formula for the current
density �see Eq. �5��, which is valid at arbitrary values of
temperature and magnetic field. At T� �VF /d it is

j��� � −
4ekF

2T

�2 

�n�0

�
0

�/2

d��
0

�/2

sin2 � cos �

�
sin�2 tan � cos ���

sinh2 
n + cos2�tan � cos ���
d� . �22�

Here 
n=2�nd / �VFcos ��, �n= �2n+1��T and the phase �
follows from Eq. �3�. Near T=0 the summation of frequen-
cies in Eq. �22� can be replaced with integration. For ��1
the response of the current is28

j��� � −
ekF

2VF

�3d
�

0

�/2

d��
0

�/2

sin2 � cos � � sin

��2�tan � cos ��d� . �23�

If the field is small enough to meet the condition ��1, Eq.
�23� reduces to the result that was obtained for the first time
in Ref. 24:

J��� = −
ekF

2VF

6�2d
� . �24�

At “phases” ��1, the screening current of Eq. �23� turns to
zero.

The current–phase relation at T=0.092 K is plotted in
Fig. 2. The dependence is nonlinear and its amplitude has a
maximum at a certain value of �. Knowing the current–
phase dependence, we can determine the susceptibility of the
NS structure using the equation �=dM /dH. It is seen in Fig.
2 that the susceptibility � of the NS structure �the derivative
of current with respect to field� changes its sign at a certain
low value of the magnetic field Hr. The “paramagnetic” por-
tion of the curve is due to the proximity effect at the NS
boundary and to the Andreev levels in the N layer.

Let us estimate � in the linear-response regime near T
=0, when this dependence is described by Eq. �24�. In such

weak fields we obtain ��3�H�N
2 �T� /�0, where the “pen-

etration depth” �N into the normal metal is dependent on
temperature:26

�N
−2�0� =

4�ne2

m*c2 �T � 0�;

�N
−2 � �N

−2�0�
6T

TA
exp�− 2T/TA��T � TA =

�VF

2�d

 . �25�

The estimate of susceptibility in the millikelvin region is

� � −
R

4c

ekF
2VF

�d

�N
2 �0�
�0

.

For the parameters of the problem

d = 3.3 · 10−4 cm, R = 8.2 · 10−4 cm,

kF
Ag � 1.2 · 108 cm−1, VF

�g � 1.39 · 108 cm/s,

�N�0� � 2 · 10−6 cm

we obtain �=−0.06, which is close to �=−3/4�1/4��.

V. DISCUSSION

In this study we have investigated the behavior of a su-
perconducting cylinder covered with a thin layer of a pure
normal metal. It is assumed that the normal metal and super-
conductor are in good contact. The system was placed in a
magnetic field directed along the NS boundary. The NS
structure has mesoscopic scale dimensions. It is assumed that
the mean free path of the quasiparticles in the N layer ex-
ceeds the characteristic length �N= �VF /kBT, which has the

FIG. 2. Dependence of screening current Eq. �5� on “phase” � at T
=0.092 K. Current is in arbitrary units �a�. The derivative of current with
respect to “phase” �magnetic field� changes its sign in the region of low �
values �b�. When the magnetic field tends to zero the total magnetic suscep-
tibility of the NS structure is positive for d=3.3�10−4 cm.
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meaning of the coherence length for a system with disturbed
long-range order. The goal of this study was to interpret the
experiments in which A. C. Mota et al.10–14 observed anoma-
lous behavior of the magnetic susceptibility of an NS struc-
ture. This phenomenon was called a reentrant effect. Until
recently it has not been explained adequately.

Earlier20 the author clarified the nature of the reentrant
effect. It was found that the origin of the paramagnetic con-
tribution is closely connected with the properties of the quan-
tized Andreev levels that are dependent on the magnetic flux
varying with both temperature and magnetic field. Typically,
the levels in the NS structure time from time �at certain val-
ues of the field H or temperatures� coincide with the chemi-
cal potential of the metal. As a result, the state of the system
is highly degenerate and the density of states of the NS struc-
ture experiences resonance spikes. The response of the nor-
mal mesoscopic layer to a weak magnetic field is paramag-
netic.

A theory of the reentrant effect has been developed in
this study. We calculated the paramagnetic contribution sepa-
rately and analyzed its behavior in a varying magnetic field
and at varying temperature. In the course of this calculation
we corrected the mistake made in Ref. 20 which led to un-
derestimation of the amplitude of the effect. The paramag-
netic response is determined only by the trajectories of the
quasiparticles that collide with the NS boundary. It is shown
that the reentrant effect can occur in a certain range of weak
magnetic fields at temperatures no higher than 100 mK. We
believe that paramagnetic reentrant effect is an intrinsic ef-
fect of mesoscopic NS proximity structures in the very low
temperature limit.

Assume that the temperature of the NS structure is about
10−3 K and the magnetic field is increasing. As soon as the
field exceeds a certain value Hr, the isothermal reentrant ef-
fect must vanish. In strong fields the Andreev levels cease to
make a resonance contribution to the paramagnetic suscepti-
bility. Now the paramagnetic contribution is made by the
states formed by the trajectories of the quasiparticles that
collide only with the dielectric boundary. However, their
contribution to the resulting susceptibility of the structure is
small because of the smallness of the quasiclassical param-
eter of the problem 1/kFR. Under this condition the suscep-
tibility exhibits diamagnetic behavior in all strong fields up
to the critical one.

A self-consistent calculation of the screening current of
the NS structure was performed taking into account the con-
tribution from the Andreev levels. The analysis of the de-
rived expression suggests the paramagnetic contribution to
current. For example, Fig. 2 illustrates the dependence of the
current upon the phase �magnetic field�. The values of the
current j to the left of the extremum �r account for the
contribution of the Andreev levels. The derivative of this
curve with respect to the field is proportional to the magnetic
susceptibility of the NS structure. It is positive �“paramag-
netic”� in the region of low magnetic fields and negative
�“diamagnetic”� at high fields.

Similar behavior is observed when the susceptibility of
the NS structure is measured as a function of temperature in
a pre-assigned weak magnetic field: it is “paramagnetic” in
the region T�Tr and “diamagnetic” at T�TR up to the criti-

cal temperature. Temperature dependence of the magnetic
susceptibility in the NS structure at fixed magnetic field will
be investigated in detail in separate publication.

In the absence of the proximity effect in the NS struc-
ture, when the penetrability of the barrier between the S and
N metals is small, the electrons of the normal metal are re-
flected specularly from its boundaries. In this case the SN
structure is a total of two isolated subsystems �normal metal
and superconductor� placed into a magnetic field. Because of
the Meissner effect, diamagnetic current develops near the
superconductor surface. In the normal metal, because of the
Aharonov–Bohm effect, the quantized spectrum of quasipar-
ticles is dependent on the magnetic flux through the cross
section of the cylinder. The flux generates a paramagnetic
contribution to the susceptibility whose quasiclassical pa-
rameter of the problem 1/kFR is small. Hence, in the absence
of the proximity effect no competition is possible between
the paramagnetic and diamagnetic contributions in the NS
structure, and the reentrant effect is unobservable in such an
NS sample.

To conclude, it should be noted that the explanation pro-
posed in this study for the reentrant effect was developed
within a model which does not assume electron–electron in-
teraction in the N layer of the NS structure. In terms of the
free-electron model, a large paramagnetic contribution to the
susceptibility of the NS structure appears in the region of
very low temperatures in a weak magnetic field. If we in-
crease the thickness d of the pre-assigned normal metal, this
would lead to a greater number n0 of Andreev levels in the
potential well and would affect the solutions of the self-
consistent equation for a. As a result, the shape of the curve
of the paramagnetic susceptibility would be slightly “de-
formed,” though its qualitative behavior would remain the
same.

The author is sincerely grateful to A. N. Omelyanchouk
for helpful discussions and support, and to S. I. Shevchenko
for valuable comments. I am indebted to I. O. Kulik for
reading through the text and useful comments.

APPENDIX
Let us calculate the integral taken over x in Eq. �15�:

J = �
0

x0 x2�	an − bx − ��1 + x2	dx

�an − bx�4��an − bx�2 − �2�1 + x2�
. �A1�

After introducing the notation 
0=an /b, we can see that
the function in front of the radical in the denominator has a
singularity at the point x=
0. Besides, as was noted in the
text, the integrand has singularities at the points x1, x2.

Integral �A1� can be written as a sum of four integrals

J = �
0

x0

dx . . . = lim
�→0
��

0

x1−�

dx . . . + �
x1+�


0−�

dx . . .

+ �

0+�

x2−�

dx . . . + �
x2+�

x0

dx ¯ � .

It is obvious that the presence of the � function makes
the second and the third integrals equal to zero. We first
calculate the integral J1:
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J1 =
1

b4 lim
�→0
�

0

x1−� x2dx

�
0 − x�4�Ax2 + Bx + C
, �A2�

where A=b2−	2, B=−2anb, C=an
2−	2. On substituting the

variable 
0−x=1/ t, the indefinite integral becomes

� t�
0t − 1�2dt
�at2 + �t + A

,

where 
=−�1+
0
2�	2, �=2
0	2. It can be calculated by the

method of undetermined coefficients:

� f�t�dt
�
t2 + �t − �

= �A1tn−1 + A2tn−2 + ¯

+ An��
t2 + �t + �

+ An−1� dt
�
t2 − �t − �

if f�t� is the polynomial to power n. Although the calculation
is tedious, it is actually simple. The coefficients A1, A2, A3,
and A4 are readily found as:

A1 = −

0

2

3�2�1 + 
0
2�

, A2 =

0�1 + 
0

2/��
�2�1 + 
0

2�2 ,

A3 = −
2an

2

3�4�1 + 
0
2�2 +

− 3 − 5
0
2 + 
0

4/2

3�2�1 + 
0�3 ,

A4 =
an

2�
0
2/2 − 1�

�2
0�1 + 
0
2�2 +


0�2 − 
0
2/2�

�1 + 
0
2�3 .

It is seen that the coefficients have different orders of
	−1-magnitude: A1 ,A2 ,A4�	−2, A3�	−4. Finally, we have to
calculate six integrals

J1 =
1

b4 lim
�→0
�

t0

t1−� �2A1t�R�t� + A2
�R�t� + A1
t3�R�t�

+ �A2
 + A1�/2�
t2

�R�t�
+ �A3
 + A2

�

2

 t
�R�t�

+
�A3�/2 + A4�

�R�t� � , �A3�

where R�t�=
t2+�t−A and the designations t0=1/
0, t1−	
= �
0−x1+	�−1 are introduced. All the six indefinite integrals
in expression �A3� can be calculated exactly.29 After substi-
tuting the limits of integration, integrals 1, 2, 3, 4 and 5 are
bounded above in energy on account of the term �R�t�
��an

2−	2 /
0, i.e., ��an−	�. Taking into account the deter-
mined coefficients Ai �i=1,2 ,3 ,4�, we can obtain the final
expression for J1::

J1 �
1

b4� b�
0
2 + 1/3�

3�2�1 + 
0
2�2 −

b�1 + 
0
2/6�

�2�1 + 
0
2�2 +

2an
2b

3�4�1 + 
0
2�2

+

b�1 −
5

3

0

2 − 
0
4/6


�2�1 + 
0
2�3 +


0b2�
0
2/2 − 1�

�3�1 + 
0
2�5/2

+

0�2 − 
0

2/2�
��1 + 
0

2�7/2 −
b�
0

2/2 − 1�
�2�1 + 
0

2�2 −
�2 − 
0

2/2�
�1 + 
0

2�3 � . �A4�

Of all the terms in �A4�, the most significant contribution is
made by the third term because there is a factor 	4 in the
numerator of the integral over the energy in Eq. �17�. The
contributions of the other terms are negligible. We thus ob-
tain the estimate

J1 �
2
0

2

3b�1 + 
0
2�2

1

�4 . �A5�

A similar calculation of the integral

J4 =
1

b4 lim
�→0
�

x2+�

x0 x2dx

�x − 
0�4�Ax2 + Bx + C

gives a contribution which is identical in order of magnitude
with �A5�. As a result, we obtain the J estimate presented in
the text, Eq. �19�.
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