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A numerical simulation of the stochastic resonance is carried out in the adiabatic approximation
in overdamped systems based on superconducting loops closed by a weak link. The systems un-
der consideration include a single-ring rf SQUID, two rings coupled by a common magnetic flux,
and a ring closed by a 4-terminal Josephson junction. It is shown that coupling of single SQUID
rings enhances the gain and the signal-to-noise ratio. These effects can be used to create new
stochastic SQUID antennas for measurements of harmonic and quasi-harmonic signals. The sto-
chastic resonance in 4-terminal SQUIDS exists even at values of the dimensionless inductance
l�1. © 2006 American Institute of Physics. �DOI: 10.1063/1.2400686�
INTRODUCTION

The concept of “stochastic resonance” �SR� was first in-
troduced in Refs. 1–3. The SR phenomenon is manifested in
an increase of the response of a determinate dynamical sys-
tem to a weak periodic signal and an increase of the signal-
to-noise ratio when an additional noise of a certain optimum
intensity is introduced in the system. The effect arises be-
cause of pumping of energy from the stochastic process
�noise� into energy of the determinate process �signal� and
leads to a seeming violation of the thermodynamic prohibi-
tion of a decrease of entropy. The paradox vanishes when it
is taken into consideration that the system has input and
output parameters, which automatically make it an open
system.4,5 The SR effect was first explained for bistable sys-
tems under the assumption of their adiabaticity �the fre-
quency of the periodic signal is significantly lower than the
inverse relaxation time of the system� in terms of two-state
models.6 Later it was observed and studied theoretically with
the use of the more general approach of linear response
theory7,8 in systems with a single stable state at high signal
frequencies.9 SR is also observed in threshold systems.10

Thus the system need not necessarily be a dynamical one;11

it is sufficient to have only nonlinearity of its “transfer func-
tion.” The SR effect has also been observed in a Josephson
percolation medium.12

As is shown in Refs. 13 and 14, the conditions necessary
for the onset of SR are easily fulfilled in superconducting
quantum interference devices �SQUIDs�, which are usually
used to register broadband low-frequency signals. In the
broadband detection regime the values of the sensitivity of
dc and rf SQUIDs are very high and practically approach the
quantum limit. Progress in technology of preparing high-
quality Josephson junctions of small area, improvement of
the parameters of transistors, and refinement of the electrical
circuits for registration have permitted the achievement of
record-high values of the sensitivity in the creation of vari-
ous devices, including multichannel receiving devices for
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measuring biomagnetic fields, susceptibility, low-frequency
radar, geophysical apparatus, etc.

It is perfectly obvious that some practical applications
�magnetoencephalography, geophysical research� do not re-
quire broadband reception, since the information signal to be
registered lies in a narrow frequency range. For example, in
nondestructive monitoring systems,15 low-frequency radar
units,16 and systems for measuring the magnetic susceptibil-
ity of biological objects17 the signal to be measured is con-
centrated at a single frequency, and a broadband input an-
tenna is an impediment to realizing the highest possible
sensitivity of the SQUID. In such measurements the SR ef-
fect can be extremely useful for narrowing the input band of
the antenna, and for improving the signal-to-noise ratio
through the stochastic amplification of weak signals. It can
be expected18 that when the area of the receiving antenna is
filled with intercoupled stochastic oscillators19 �e.g., based
on a superconducting quantum interferometer with one Jo-
sephson junction� the SR will lead to enhancement of the
response to a weak signal. However, the behavior of such a
dynamical system on the whole will depend on many param-
eters, and to search for the optimum strategy experimentally
is extremely laborious. Therefore, it is of significant interest
to carry out a theoretical search for the optimal characteris-
tics of both autonomous SR oscillators and coupled dynami-
cal systems.

This paper is devoted to a numerical simulation of SR in
a system of coupled rf SQUID rings and in a superconduct-
ing ring closed by a 4-terminal weak link.20

In the interests of practical applications, we have studied
the response of rf SQUID rings to a weak harmonic signal of
very low frequency ��1 Hz�. At the same time, it is known
that for a typical SQUID ring the characteristic relaxation
time of the flux, �L=L /RJ��10−9–10−11� s �L is the induc-
tance of the ring, and RJ is the normal resistance of the weak
link�. Such a large difference of the characteristic times of
the signal and system permits one to use the adiabatic ap-
© 2006 American Institute of Physics
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proximation and avoid direct solution of the equations of
motion. The approach developed in the present study pro-
poses to construct a potential surface that depends on both a
periodic signal and a random signal and to trace the evolu-
tion of its topology and shape under the influence of these
external signals. The shape of the potential surface at each
point in time �with the pre-history taken into account�
uniquely determines the state of the system. Thus one con-
structs a time series of states of the system and subjects it to
further analysis.

MODEL OF STOCHASTIC RESONANCE IN A SINGLE rf
SQUID RING

The SR effect has been studied most fully in systems
having two stable states separated by a potential barrier. To
check the workability of the proposed calculation technique,
let us go through a numerical simulation of such a system
while elucidating the SR mechanism along the way. Let us
consider a superconducting loop containing a Josephson
weak link, which we shall refer to as an rf SQUID ring �inset
in Fig. 1�.

Taking into account that at finite temperatures both a
supercurrent and quasiparticle current pass through the Jo-
sephson junction, i.e., using the well-known resistively
shunted Josephson junction �RSJ� model, one can write an
equation for the magnetic flux � inside the ring:21

�LC
d2

dt2 + �L
d

dt
+ 1���t�

�0
+

�

2�
sin

2��

�0
=

�e�t�
�0

, �1�

where C is the capacitance of the ring �concentrated at the
Josephson junction�, �L=L /RJ is the magnetic relaxation
time of the ring, Ic is the critical current of the Josephson
junction, �=2�LIc /�0 is the hysteresis parameter �hyster-
esis is observed on the ���e� curve for ��1�, and �0 is the
magnetic flux quantum.

If a microbridge or point contact is used as the Joseph-
son junction, its capacitance will be vanishingly small �C
�10−15 F�, and its resistance in the normal state will have a
value RN�1 �. If a tunnel junction is used, it will be
shunted by a small resistance in order to reduce the influence

FIG. 1. Potential function of a superconducting loop containing a Josephson
junction. The hysteresis parameter �=12, the external magnetic flux xdc=0.
Inset: scheme of the rf SQUID ring; L is the inductance of the ring, � is the
magnetic flux through the ring, and Ic and C are the critical current and the
capacitance of the Josephson junction, respectively.
of the junction capacitance and thereby shorten the duration
of the transient process in the ring. Thus, since the induc-
tance L of the ring usually lies in the range 10−9–10−11 H, it
turns out that the term with the second derivative in Eq. �10�
is much smaller than the other terms and can be neglected.

We separate the external flux �e�t� into a dc component
�dc, a periodically alternating signal �ac with amplitude a
and frequency fs, and a stochastic part �N:

�e�t� = �dc + �ac + �N�t�; �ac = a�0 sin�2�fst� , �2�

where for �N�t� we use a Gaussian random process with zero
mean and variance D:

�N�t� = �0��t�, ���t���t��	 = 2D	�t − t�� .

The details of the numerical realization of the periodic
signal and noise component will be discussed below.

Normalizing the magnetic flux by the flux quantum �0

and introducing the notation

x
 = �
/�0, �3�

where 
 is any of the subscripts, we write the equation of
motion of the system:

�L
dx

dt
+

�U�x,t�
�x

= 0. �4�

The time dependence of the potential of the system is
determined by the time evolution of the external flux �2�
normalized according to Eq. �3�:

U�x,t� =
1

2
�x − xe�t��2 −

�

4�2 cos 2�x , �5�

where the normalized external flux

xe�t� = xdc + a cos�2�fst� + ��t� . �6�

We note that here all of the time dependence can be
transferred to the potential because of the adiabatic condition
fs�1/�L. As we have said, in real SQUID applications for
signal frequencies in the interval 1–1000 Hz this condition
holds to good accuracy. Here, of course, we also impose
restrictions on the noise band, the upper frequency boundary
of which must also be much less than �L.

The shape of the potential U�x� of a SQUID ring in the
case ��1 and in the absence of an additional external flux
�xe=0� is shown in Fig. 1. The local minima of the potential
correspond to stable states of the ring, separated by energy
barriers.

The position and number of extrema of the potential are
determined from the condition

dU�x�
dx

= 0, �7�

x − xdc +
�

2�
sin 2�x = 0. �8�

To obtain a double-well potential symmetric with respect
to a change of the external magnetic flux, one should set
xdc=1/2, so and then the positions of the extrema will be
solutions of the transcendental equation
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xm =
1

2
−

�

2�
sin 2�xm. �9�

It follows from Eq. �9� that the potential contains not
more than two minima at values of � in the interval from 1 to
�7.7 �Fig. 2a�, while the system has two stable states sepa-
rated by a potential barrier, making possible the existence of
SR in it. We shall specify such a potential in our simulation
of the behavior of a single-ring rf SQUID. We note that SR
should also exist in a multistable system with a multiwell
symmetric potential, but the analysis of such a situation is
considerably more complicated. In all the papers known to
us the authors have restricted consideration to only two ad-
jacent minima of the potential. Following those papers, we
shall assume that for arbitrary � the change of the magnetic
flux in the ring is sufficiently small that it does not cause
transitions of the system into more remote wells. We also
note that it is possible to symmetrize the potential of the ring
at zero external magnetic flux by using a � junction22 instead
of the usual Josephson junction; in such a junction in the
ground state with zero current the phase difference of the
order parameter is equal to �, and a flux equal to �0 /2 exists
in the ring. For practical applications this method is techno-
logically easier than the specification of an external magnetic
flux.

Using this potential as an example, one can explain the
essence of the SR effect as follows. Initially, in the absence
of noise, the system �particle� is found in one of two local
potential energy minima �see Fig. 2a�, executing small in-
trawell oscillations under the influence of a weak periodic
force applied to it �a signal�. This signal causes a periodic tilt
of the potential well to one side and then the other, lowering
the barrier somewhat. The amplitude of the signal is insuffi-

FIG. 2. Symmetric bistable potential of the rf SQUID ring for �=2 and
xdc=0.5; the values of the flux corresponding to the minima of the potential
�xm1 ,xm2�, the middle of the barrier �xb�, and the potential barrier height 
U
�a�. A diagram of the transition of the system from one stable state to another
upon the warping of the potential by an external magnetic flux �b�.
cient for a transition of the system across the barrier into the
second local minimum of the potential. When noise is added
to this system there is a finite probability that the system will
be transferred across the barrier into the other well �when the
instantaneous warping of the potential is sufficient to make
one of the local minima vanish�; see Fig. 2b. This probability
depends on the barrier height and increases with increasing
noise intensity �for white noise with a Gaussian distribution
the term “intensity” is understood to mean the variance of
the distribution�. The mean frequency of escape of a particle
from a well �and, hence, the frequency of hops to the other
well� under the influence of noise in a highly damped system
was determined by Kramers,23 and for white noise, parabolic
potential wells, and relatively high barriers it is given by the
Arrhenius law:

rk =
�0�b

2��
exp�−


U

D
� , �10�

where �0=
U��xm�

m is the frequency of oscillations about the

bottom of a well, �b=
U��xb�

m is the frequency of oscillations
at the local maximum �at the barrier�; m is the mass of the
oscillating particle, � is the coefficient of viscous friction
�dissipation�, 
U is the barrier height, and D is the noise
intensity. If the noise is of a thermal origin, then D=kBT.

Since the application of a periodic signal causes the po-
tential barrier to become a periodic function of time, the
transition probability, which determines the output signal,
also begins to depend periodically on time. When, with in-
creasing noise intensity, the Kramers frequency becomes
twice the frequency of the periodic signal, a “synchroniza-
tion” of the stochastic and periodic processes occurs: on av-
erage the hops caused by the noise occur “in phase” with the
periodic signal, and in the spectrum of the system one ob-
serves an increase of the power of the output signal at the
frequency of the weak input signal. Thus the noise facilitates
interwell transitions at the times of the peak values of the
useful signal. We note that, because of the strong damping
the system does not have any characteristic oscillations; all
of the processes in it are of a relaxation character.

The above-described behavior of a superconducting ring
including a Josephson junction was investigated using a nu-
merical model with the potential �5� and external signal �6�.
For convenience the constant bias xdc=1/2 applied to sym-
metrize the potential was eliminated from Eq. �5� by the
change of variables �x−1/2�→x.

NUMERICAL SIMULATION TECHNIQUE AND THE RESULTS
FOR A SINGLE RING

The numerical simulation procedure producing the re-
sults shown in Fig. 3 consisted of the following. A given time
interval was divided into a large number of subintervals
equal to some power of 2 �usually 215=32768� for conve-
nience in the subsequent Fourier analysis. At each given
point in time the values of the sinusoidal periodic signal and
the noise were specified. In most of the calculations the sig-
nal frequency fs was equal to 2–4 Hz and the signal ampli-
tude a=0.01–0.3 �in units of �0�. To obtain noise with a
Gaussian distribution, zero mean, and variance D �which de-
termines the noise intensity�, a random number generator
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with a repetition period of around 290 was used. The noise
spectrum is limited from above by a digital filter. The cutoff
frequency of the noise was chosen much higher than the
signal frequency and, hence, the mean frequency of interwell
transitions when the SR effect is realized. Then the number
and position of the minima of the potential function are de-
termined at every point in time tn. If there are two minima
�Fig. 2a� then it is assumed that the state of the system has
not changed, and it remains in the same well, only with a
slight coordinate shift �this situation corresponds to intrawell
oscillations�. If the potential well is warped so that the com-
bined effect of the periodic and noise signals leaves only a
single minimum, the system is transferred into it �if hitherto
it was at the other minimum; Fig. 2b�, and the value of the
normalized flux corresponding to this minimum is assigned
to it. As a result, at different noise levels one obtains time
series close to a telegraph signal �Fig. 3a�. One can eliminate
the influence of the intrawell oscillations and obtain a real
telegraph signal by filtering the time series by the two-states
method,6 but further calculation shows that this is unneces-
sary, since the final curves of the flux gain and signal-to-
noise ratio remain practically the same as without filtering.

This time series is subjected to a fast Fourier transform
�FFT�, yielding the spectra of the mean-square deviation of
the output signal �the flux in the ring; Fig. 3b�. With growth
of the noise �from top to bottom in Fig. 3� the behavior of the
system changes qualitatively. At a low noise level, hops from
one potential well to the other are practically absent, and
small intrawell oscillations corresponding to the input signal

FIG. 3. Time series of a periodic input signal xs �white curves�, the signal
with noise, xe=xs+xN �black�, and the output signal x �gray� �a�; the Fourier
spectra of the output signal at different noise levels s �b�.
are observed �the first pattern in Fig. 3a�. With increasing
noise, hops between wells begin, and a noticeable peak of
the signal at the fundamental frequency appears �the second
pattern in Figs. 3a and 3b, respectively�. At a certain optimal
noise level a statistical “synchronization” of the noise and
signal appears, the hops become quasi-periodic, and the
height of the peak in the output Fourier spectrum at the fun-
damental frequency grows strongly against the background
of the subsiding noise shelf �the third pattern in Fig. 3a and
3b�. A high noise level destroys the correlation of the hops
with the periodic signal, and the height of the peak at the
fundamental frequency in the Fourier spectrum falls off �the
fourth picture in Fig. 3b�.

Figure 4 shows a plot of the flux gain �, defined as the
ratio of the output to the input signal at the fundamental
frequency, as a function of the standard deviation of the
noise s�D1/2 �the noise level�. Also shown is the behavior of
the signal-to-noise ratio �SNR� as a function of s. The value
of the SNR was calculated as the ratio of the height of the
main peak in the Fourier spectrum to the mean height of the
noise shelf beneath it. The curves have the “classic” form for
the SR effect.4,5,13,14 We note that, generally speaking, the
values of the noise level at which the maxima are observed
on the curves of the gain and signal-to-noise ratio do not
coincide. A noise level s�0.01 is insufficient for transition
through the barrier with appreciable probability �only in-
trawell oscillations occur�, and therefore the determination of
the signal-to-noise ratio at such small values of the noise is
incorrect.

A characteristic feature of the SR is the high sensitivity
of the spectrum of the output signal to a bias of the input
flux. Since the process of stochastic amplification is of a
nonlinear character, the spectrum of the output signal con-
tains higher harmonics in addition to the fundamental fre-
quency �Fig. 5�. In the absence of a constant bias flux �xdc

=0� the potential U�x� is symmetric, and even harmonics are
absent from the spectrum �Fig. 5a�. By applying a constant
bias one can achieve a situation in which odd harmonics �not
counting the fundamental frequency� are absent from the
spectrum; Fig. 5c. Figure 6 shows the dependence of the
amplitudes of the first three harmonics of the signal as func-

FIG. 4. Dependence of the flux gain and signal-to-noise ratio on the noise
level in a one-ring rf SQUID. Parameter �=1.5, input signal amplitude a
=0.01, signal frequency fs=2 Hz, noise cutoff frequency fc=2048 Hz, and
number of points in the time series 32768. The curve of the SNR does not
appear smooth because of the scatter in the determination of the position of
the noise shelf.
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tions of the dc bias flux; they are in good agreement with the
results given in Ref. 13.

SIMULATION OF THE STOCHASTIC RESONANCE
IN COUPLED RINGS

Consider the situation in which rings lie side by side in
the same plane and have a magnetic coupling between them
that is determined by their mutual inductance. Here part of
the flux of one ring falls into the other ring, and vice versa.

In this case the potential is written as the sum of the
individual potentials of the rings and an overlap term taking
the interaction into account:

FIG. 5. Even and odd harmonics in the Fourier spectrum of the output signal
at different levels of the constant bias flux. The noise intensity is equal to
that value at which the maximum stochastic amplification of the signal is
observed.

FIG. 6. Values of the first three harmonics of the main signal in the output
Fourier spectrum as a function of the input bias flux xdc; �=1.5. The noise
intensity is equal to that value at which the maximum stochastic amplifica-
tion of the signal is observed.
U�x1,x2� =
�x1

2 + x2
2�

2
+

��1 cos 2�x1 + �2 cos 2�x2�
4�2

− kx1x2, �11�

where x1 ,x2 and �1 ,�2 are normalized fluxes and the hyster-
esis parameters in the first and second rings, respectively,
while k is the coupling strength via the flux between rings
�the normalized mutual inductance�. We recall that x1 and x2

have been shifted by 0.5 for symmetrization of the potential.
The negative sign of the cross term means that the fluxes of
the rings are directed counter to each other.

Figure 7 shows the shape of the potential surface for a
system of two coupled rings at different values of the hys-
teresis parameters �1 ,�2 �Fig. 7a and 7b� and coupling co-
efficient k �Fig. 7c and 7d�.

The superposition of a sinusoidal periodic signal and
noise, as in the case with one ring, leads to a time-dependent
warping of the potential:

U�x1,x2,t� =
�x1 − xe1�t��2 + �x2 − xe2�t��2

2

+
��1 cos 2�x1 + �2 cos 2�x2�

4�2 − kx1x2,

�12�

where the external fluxes xe1�t� ,xe2�t� are determined by for-
mula �6� in which the constant bias xdc is set equal to zero.

All of our further results are shown for the case xe1�t�
=xe2�t�=xe�t� as having the most practical significance.

Figure 7e and 7f shows two “phases” of the tilt of the
potential by an external flux.

As we see in Fig. 7, in the case of a pair of coupled rings
the system can land in one of four wells of the potential
surface.

The procedure for determining the present state of the
system in this case is somewhat more complex. One takes
into account the vanishing of the barrier between the well in
which the system is located at the given time and the neigh-
boring wells. If both barriers vanish simultaneously, then the
probability of transition of the system into the neighboring
wells is the same for both, and the new present state is cho-
sen from them at random. In the course of the simulation it
became clear that in the presence of four wells the transition
of the system occurs not directly along the diagonals but
with an intermediate hop through one of the nearest minima,
since the height of the barrier between nearest minima is
lower than between wells along a diagonal.

The time dependence obtained for the total flux in the
rings, as in the case of a single ring, was subjected to FFT. In
the same way, the flux gain and the signal-to-noise ratio were
calculated from the height of the spectral peak at the fre-
quency of the useful signal. The resulting dependence of �
on the noise level s and coupling constant k for the case of
identical rings is shown in Fig. 8a, and for the case of rings
with different hysteresis parameters �, in Fig. 8b. As a cal-
culation shows, the signal-to-noise ratio behaves in an analo-
gous manner, but the scatter of the calculated points is rela-
tively large because of the large scatter in the determination
of the noise shelf.
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If the hysteresis parameters �1 and �2 of the rings are
different, then the curve of the gain as a function of the noise
level ��s� exhibits a feature corresponding to resonance of
the ring with the lower � in addition to the maximum corre-
sponding to the total resonance of the two rings. It is seen
that a higher gain is reached in the case of identical rings. In
both cases the flux gain increases with increasing coupling
strength k between rings. The gain in the case of strong cou-
pling is significantly greater than in the case of a single ring
�cf. Figs. 4 and 8a�. This effect can be given a transparent
interpretation in terms of the geometry of the potential sur-
face. With increasing coupling coefficient two of the four
minima gradually vanish �the transition from a surface of the
form in Fig. 7a to the surfaces in Fig. 7b and 7c�, and now
the behavior of the coupled pair is similar to the behavior of
the single ring, with the only difference being that the

FIG. 7. Potential surface U�x1 ,x2� for two coupled rf SQUID rings in the abs
�1=�2=1.5, k=0 �a�; �1=1.5, �2=2, k=0 �b�, �1=�2=1.5, k=0.4 �c�; �1

=0.1, xe=−0.02 �e�; �1=�2=1.5, k=0.1, xe= +0.02 �f�.
minima lie along the diagonal, and the distance between
them is greater than in a single SQUID, which makes for an
increase in the SR effect. Based on this geometric interpre-
tation, one expects that with increasing number of coupled
rings the gain should increase �N1/2, where N is the number
of coupled rings.

MODELING THE STOCHASTIC RESONANCE
IN A 4-TERMINAL SQUID

The SR in a 4-terminal SQUID24 at relatively high signal
frequencies was considered in Ref. 25. That has made it pos-
sible to obtain the time evolution of the total magnetic flux in
a ring by direct numerical solution of the equation of motion
in the presence of noise. At low signal frequencies the direct
solution of the equation of motion becomes an extremely

of additional bias, input signal, and noise at the following parameter values:
1.5, k=0.9 �d�, and with biasing by an external signal for �1=�2=1.5, k
ence
=�2=
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protracted process, since, because of the presence of a noise
component, one cannot take advantage of methods of solu-
tion of differential equations developed for stiff systems.
However, numerical simulation in the adiabatic approxima-
tion does not entail any particular complication. If we restrict
consideration to the case of zero transport current I and take
into account that �=0, the potential describing a 4-SQUID,24

U��,�,��I,�e� =
�� − �e�2

2l
− I� − cos2 �

2
− cos2 �

2

− 2 cos
�

2
cos

�

2
cos � , �13�

can be written in the form

U��� =
�� − �e�2

2l
− 1 − cos2 �

2
− 2�cos

�

2
� . �14�

This potential �Fig. 9� is not equivalent to the potential
of an rf SQUID ring containing an ordinary 2-terminal Jo-
sephson junction. Unlike the usual SQUID, here the potential
remains double-well even when the dimensionless induc-
tance parameter l�1.

Indeed, a numerical simulation shows that SR is present
in such a ring. Figure 10 shows the flux gain for a sinusoidal
signal as a function of the noise level.

Detailed study of SR in a 4-terminal SQUID, including
the case when there is a transport current through the weak
link, is beyond the scope of this paper.

FIG. 8. Flux gain � as a function of the noise level s and coupling coeffi-
cient k for identical rings �a� and different rings �b�. Signal amplitude a
=0.03, signal frequency fs=2 Hz, hysteresis parameters �1=�2=1.5 �a�;
�1=1.5, �2=2 �b�.
STOCHASTIC ANTENNAS

At this time even the standard SQUID-based receivers
have an intrinsic sensitivity at the level 10−32–10−31 J /Hz.
However, the realization of such a sensitivity is in many
cases limited by noise in the antenna circuits, which in the
majority of devices are broadband. To reduce the influence of
external electromagnetic fields the input circuits of SQUIDs
are designed as gradientometers and are partially filtered by
means of RL filters. However, the RL filters increase the
spectral density of noise in the antenna, and the gradientom-
eters degrade the sensitivity of the receivers in relation to
sources located in the far zone.16 These difficulties can be
partially overcome with the use of the SR effect in the an-
tenna units.

It follows from the results presented above that if the
area of the receiving antenna is filled with one or several SR
loops �Fig. 11�, then the current induced in the antenna will
have frequency dependence with a maximum at the reso-
nance frequency. Since that maximum depends on the noise
power, the frequency characteristic of the antenna can be
tuned within certain limits to the frequency of an external
harmonic signal to obtain a maximum transformation ratio of
the magnetic flux in the SQUID at a specified frequency.
Interestingly, in the region of infrared frequencies lying be-
low the frequency of the stochastic resonance, such antennas
have a low transformation ratio and act as filters of a sort,
while at the chosen SR frequency one can even achieve
weak-signal gain. In some kinds of SQUID-based receivers
�see, e.g., Refs. 15–17� low-frequency magnetic fields are

FIG. 9. Potential of a 4-terminal SQUID for l=1, I=0, �e=�.

FIG. 10. Flux gain � as a function of the noise level s in the ring of a
4-terminal SQUID. Parameters: l=0.5, f =2 Hz, a=0.25.
s
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used to probe the objects under measurement, and in this
case useful information is contained in the reflected har-
monic �or quasi-harmonic� signal, which can be amplified
with the use of SR antennas.

The above analysis shows that when the area of planar
antennas are filled with a large number of stochastic loops, it
is important to use systems with a small scatter of param-
eters. For example, one of the requirements is a minimum
scatter with respect to the critical current, the amplitude of
which controls the height of the potential barrier. This con-
dition is very well satisfied in � junctions, which were stud-
ied in detail in Ref. 22. Moreover, the ground state of a
superconducting ring closed by such a � junction is a state
with a symmetric double-well potential, as is needed for SR.
Since the characteristic normal resistance of such junctions is
rather large �R�1 ��, the characteristic time L /R does not
restrict the stochastic dynamics under consideration.

CONCLUSION

The phenomenon of stochastic resonance in systems
containing a superconducting loop with a Josephson weak
link enables one to obtain additional amplification of a weak
magnetic signal. The coupling of even two such loops to-
gether by a common magnetic flux leads to an appreciable
increase �by nearly a factor of 1.5� in the flux gain and
signal-to-noise ratio. It is expected that as the number of
coupled rings increases, the gain and signal-to-noise ratio

FIG. 11. Possible configurations of stochastic antennas for receiving weak
quasi-harmonic signals with the use of SQUIDs: a,b—antennas for SQUID
microscopes, c—antennas for low-frequency radar, geophysical magnetom-
etry, and biomagnetic measurements.
will grow by approximately a square-root law. This effect
can be used to create fundamentally new stochastic SQUID
antennas that permit one to obtain a relatively large gain in
the presence of noise. The use of a � junction as a weak link
makes it possible to avoid the need for additional bias by an
external constant flux.

Stochastic resonance in a superconducting ring contain-
ing a 4-terminal Josephson junction �a 4-terminal SQUID� is
interesting from the standpoint that the parameters of a
4-SQUID can be controlled by changing the conditions for
the appearance of SR. This, in principle, permits one to cre-
ate a stochastic amplifier with a tunable signal band and with
tuning of the working point under a given noise level �exter-
nal and internal�.

A convenient method for studying SR in these and other
systems in the adiabatic limit is numerical simulation based
on analysis of the changes of the geometry of the potential
surface of the system as a result of external influences.
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