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Summary. We calculate analytically the full counting statistics for a short normally
conducting diffusive wire connecting a normal reservoir and a short superconductor-
normal metal-superconductor junction, at arbitrary applied voltages and tempera-
tures. The cumulant-generating function oscillates with the phase difference φ across
the junction and approaches the normal-state value at φ = π. At T = 0 and at ap-
plied voltage much smaller than the proximity gap ∆φ, the current noise PI doubles
and the third current cumulant C3 is 4 times larger compared to the normal state;
at eV � ∆φ they acquire large excess components. At the gap edge, eV = ∆φ,
the differential shot noise dPI/dV exhibits sharp peak, while the differential Fano
factor dPI/dI turns to zero along with the differential resistance, which reflects the
transmission resonance associated with the singularity of the density of states. At
nonzero temperature, C3 shows a non-monotonous voltage dependence with a dip
near eV = ∆φ; the zero-bias slope of C3(V ) is much larger (up to 5 times) than at
the zero temperature.

During last few years the statistics of quantum and thermal fluctuations of
the electric current in mesoscopic systems has been attracted a rapidly grow-
ing attention. It was recognized that measuring the fluctuation properties of
mesoscopic conductors provide unique and important information about cor-
relations and statistics of charge carriers, the information that is not accessible
through conventional conductance measurements. An adequate and powerful
theoretical approach to the fluctuations was built on the concept of full count-
ing statistics (FCS), i.e., the statistics of the number of particles transferred
through the conductor. The concept of FCS, which appeared first in quan-
tum optics, was extended to normal electron systems [1] and then successfully
applied to superconducting structures [2].
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Fig. 1. A model of Andreev interferometer. A diffusive wire of the length L connects
a normal reservoir (N) and short SNS junction of the length d; magnetic flux Φ
threads a superconducting loop (S) of the interferometer.

The basic problem of the FCS is to calculate a probability Pt0(N) for N
particles to pass a system during an observation time t0. Equivalently, one
can find a cumulant generating function (CGF) S(χ),

exp[−S(χ)] =
∑

N
Pt0(N) exp(iNχ), (1)

which determines the current correlation functions as follows:

Cn ≡ 1
en

∫ t0

0

dt1 . . .

∫ t0

0

dtn〈〈Î(t1) . . . Î(tn)〉〉 = − (∂/i∂χ)nS(χ)|χ=0 , (2)

where 〈〈. . .〉〉 denotes the irreducible part (cumulant) of a correlation function.
The first two cumulants, C1 = N ≡

∑
N NPt0(N) and C2 = (N −N)2, corre-

spond to the average current I = (e/t0)C1 and noise power PI = (2e2/t0)C2.
Intense studies of the current noise have led to a number of interesting re-
sults concerning statistical correlations in the current transport (for a review,
see Ref. [3]), and the effective charge qeff transferred during an elementary
transport event. The third cumulant C3 = (N −N)3 has recently attracted
a special interest as the lowest-order correlation function which is not dis-
guised by equilibrium fluctuations [4]. First measurements of C3(V ) in the
tunnel junction [5] have revealed a high sensitivity of this cumulant to an
electromagnetic environment [6].

In normal metal (N)/superconducting (S) hybrid structures, the basic
mechanism of charge transport at subgap energies, E < ∆, is due to An-
dreev reflection of quasiparticles at the NS boundary [7], i.e., conversion of
electrons incident from the normal side of the junction to retroreflected holes,
accompanied by escape of Cooper pairs into the superconductor. During an
elementary Andreev reflection event, the effective charge transferred through
the NS interface is twice the electron charge, qeff = 2e. This charge doubling
strongly affects the current statistics in the NS junctions. For example, it
leads to a factor of two increase in the magnitude of a zero-bias shot noise in
the NS junctions as compared to that in normal ones [2, 8]. At finite biases,
the effective charge becomes dependent on the applied voltage [9, 10], due to
variations of the size of the proximity region near the NS boundary, where
the quantum coherence holds between the electrons and retroreflected holes.
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In the Andreev interferometers (see Fig. 1), the phase relations between
the electron and hole wavefunctions in the normal wire can be controlled
by the magnetic flux enclosed by a superconducting loop, which results in
the periodic dependence of transport characteristics of the interferometer on
the superconducting phase difference φ across the SNS junction. Initially, the
oscillations of the conductance were investigated both experimentally (see a
review in Ref. [11]) and theoretically [12], and, more recently, the oscillations
in the current noise were reported [10].

Motivated by the growing interest in high-order correlation functions, we
develop in the present Paper a systematic approach to full statistics of charge
transport in Andreev interferometers. We adopt several simplifying assump-
tions, which enables us to present an analytical solution for the CGF and,
without a loss of generality, to clearly demonstrate essential features of coher-
ent effects in the current statistics in NS structures. Our approach is based
on the extended Keldysh-Green technique [13, 14], in which the CGF is de-
termined by the equation

(−ie/t0)∂S/∂χ = I(χ), I(χ) =
1
8e

∫
dETrτ̌K Ǐ , τ̌K = σzτx. (3)

The Pauli matrices σ (τ) operate in the Nambu (Keldysh) space. The counting
current I(χ) is to be found from the quantum kinetic equations [15] for the
4 × 4 matrix Keldysh-Green function Ǧ in the mesoscopic normal region of
the interferometer confined between the reservoirs,

σN

[
σzE, Ǧ

]
= i�D∂Ǐ, Ǐ = σN Ǧ∂Ǧ, Ǧ2 = 1̌, (4)

where D is the diffusion coefficient, ∂ denotes spatial derivative, and σN is
the normal conductivity per unit length. The counting field χ is introduced
via a modified boundary condition involving the gauge transformation of the
local-equilibrium function ǦR, e.g., in the right (R) normal reservoir,

ǦR(χ) = exp(iχτ̌K/2)ǦR exp(−iχτ̌K/2). (5)

A brief overview of this technique in the particular case of normal structures
is given in the Appendix.

For a multi-terminal structure of Fig. 1, the solution of Eq. (4) has to
be found separately in each arm of the interferometer, taking into account
the matching condition following from the Kirchhoff’s rule for partial count-
ing currents at the node [16]. The problem simplifies if the junction length
d is much smaller than the length L of the interferometer wire (or, more
precisely, in the case where the wire resistance dominates the net interfer-
ometer resistance). In this case, the wire weakly affects the spectrum of the
junction [17], which thus can be considered as an effective left (L) reservoir.
Correspondingly, the function ǦL which imposes the boundary condition to
Eq. (4) at the junction node, is to be constructed from the Green and dis-
tribution functions taken at the middle of a closed equilibrium SNS junction.
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Furthermore, if d is much smaller than the coherence length ξ0 =
√

�D/∆,
these Green functions take the BCS form, with the phase-dependent proxim-
ity gap ∆φ = ∆| cos(φ/2)| [18]. This results in the BCS-like singularity at the
gap edge in the density of states (DOS) of the normal wire and suppression
of the DOS at E < ∆φ. Within such model, the problem of current statistics
in the Andreev interferometer reduces to the calculation of the CGF for an
NS junction with the effective order parameter ∆φ in the superconducting
reservoir.

Proceeding with this calculation, we encounter a common technical diffi-
culty, namely, the violation of the standard triangle form of Ǧ in the Keldysh
space which results from the gauge transformation in Eq. (5). In such a situa-
tion, Eq. (4) cannot be decomposed into the Usadel equation for the Green’s
functions and the kinetic equations for the distribution functions, and there-
fore the well developed methods for solving Keldysh-Green’s equations quite
cannot be applied. This is the reason why the FCS problem in the NS struc-
tures requires generally a numerical analysis of the whole 4×4 matrix bound-
ary problem; such an analysis has been carried out so far only in the limit of
small characteristic energies {eV, T} 	 ∆ [9, 10].

In some particular cases, however, the analytical solution to this prob-
lem can be attained by the methods of the generalized circuit theory [19, 20].
Within this approach, the CGF for a mesoscopic connector between two reser-
voirs is expressed in terms of the distribution ρ(T) of the transparencies of
the conduction channels,

S(χ) =
gt0
4e2

∫
dE

∫ 1

0

dTρ(T)Tr ln W̌ (E,T, χ), (6)

W̌ = 1 + (T/4)({ǦL, ǦR(χ)} − 2), (7)

where g is the connector conductivity. Eq. (6) generally applies to the normally
conducting structures with arbitrary ρ(T). It was also applied to the super-
conducting tunnel junctions [21] and point contacts [20, 22] with a singular
transparency distribution localized at the junction transparency. In general NS
structures, the statistics of conducting modes, in contrast to their behavior in
normal structures [23, 24], do not reduce to statistics of transparencies - due
to dephasing between the electron and hole wavefunctions described by the
left-hand side (lhs) of Eq. (4) - but requires the knowledge of full scattering
matrices. However, if the characteristic energies are much smaller than the
Thouless energy, {eV, T} 	 ETh = �D/L2, the dephasing term in Eq. (4) can
be neglected, and the transparency statistics for a normal wire [23] can be
applied to the NS structure. In long junctions, L 
 ξ0, where the Thouless
energy is small, ETh 	 ∆, the quasiparticle spectrum is structureless at small
energies, E 	 ETh , which results in linear voltage dependence of the CGF
and, correspondingly, of all cumulants at eV 	 ETh [14]. In the opposite
limit, eV 
 ETh , the CGF for a long junction can be found within the
so-called “incoherent” approximation [25], by neglecting the contribution of
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the coherent proximity region. The calculations in Refs. [14] and [25] lead
to the conclusion that the FCS exhibits the reentrance effect: In both limits,
eV 	 ETh and eV 
 ETh, it is described by the same expression for S(χ). An
interesting situation occurs in NS junctions with opaque interfaces dominating
the net resistance [26]. In this case, the crossover between the coherent and
incoherent transport regimes occurs at very small voltage of the order of the
inverse dwell time of quasiparticles confined between the interface barriers.

In our work we focus on short NS junctions with the length smaller than
ξ0 and, correspondingly, with large Thouless energy, ETh 
 ∆φ. In such
situation, the energy region of negligibly small dephasing, E 	 ETh , overlaps
with the region E 
 ∆φ, in which the NS junction behaves as the normal
system. This enables us to apply Eq. (6) and the transparency statistics for
diffusive normal conductor at arbitrary voltages and temperatures, and obtain
the analytical solution of the FCS problem in the full range of V and T .

The calculation of the integrand in Eq. (6) is performed as follows. The Kel-
dysh-Green function GR(χ) in the normal reservoir is traceless in the Keldysh
space and therefore it can be expanded over the Pauli matrices τ as

ǦR(χ) = τ (g1 + σzgz), g1gz = 0, g2
1 + g2

z = 1, τ = (τx, τy, τz), (8)

where the vectors g1,z(χ) are expressed through the local-equilibrium distri-
bution functions in the voltage biased electrode. In the subgap energy region,
E < ∆φ, the function ǦL at the junction node is the unity matrix in the
Keldysh space proportional to the Nambu matrix Green’s function ĝ,

ǦL = ĝ = σy exp(σxθφ), ĝ2 = 1, θφ = arctanh(E/∆φ). (9)

Then the calculation of the trace in the Nambu space in Eq. (7) is reduced to
the summation over the eigenvalues σ = ±1 of the matrix ĝ,

Tr ln W̌ =
∑

σ
Trτ ln W̌σ, W̌σ = a+ τb, (10)

a = 1 − T/2, b = (T/2)(σg1 − igz sinh θφ). (11)

Noticing that any 2 × 2 matrix can be presented in exponential form as

W̌σ = exp(lnw + ϕp̌), (12)

w2 = a2 − b2, coshϕ = a/w, p̌ = τb/w sinhϕ, Trp̌ = 0, (13)

where w is independent of σ due to orthogonality of the vectors g1 and gz,
one easily obtains Trτ ln W̌σ = lnw2 and Tr ln W̌ = 2 lnw2. At E > ∆φ, the
function GL is traceless in the Keldysh space,

ǦL = ĝ(τgL), ĝ = σz exp(σxθφ), θφ = arctanh(∆φ/E), (14)

where the vector gL is constructed from the equilibrium distribution function
at zero potential. In this case, the 4× 4 matrix W̌ has the form W̌ = a+ σb,
where a and b2 are scalars,
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a = 1 − (T/2)(1 − gLgz cosh θφ), (15)

b2 = (T/2)2[(gLg1)2 − (gL × gz)2 sinh2 θφ], (16)

therefore it can also be transformed to the exponent form similar to Eqs. (12)
and (13), with the traceless matrix p̌ = σb/w sinhϕ. Following this line, we
obtain Tr ln W̌ = 2 lnw2, and then, integrating over T in Eq. (6), we arrive
at the final expressions for the CGF

S(χ) =
gt0
4e2

∫ ∞

0

dE S(E,χ), S(E,χ) =
{

2θ2, E < ∆φ,
θ2
+ + θ2

−, E > ∆φ,
(17)

where the quantities θ and θ± are given by explicit relations,

Z(0) cosh2 θ = Z(2χ) cosh2 θφ, (18)

Z(0) cosh θ± = [Z(χ) + cosχ− 1] cosh θφ ± tanh
ε

2
[sinh p− (19)

sinh (p− iχ) − i sinχ]
(
1 − cosh ε+ 1

cosh p− 1
sinh2 θφ

)1/2

,

θφ = arctanh
[
(∆φ/E)sgn(E−∆φ)

]
, (20)

Z(χ) = cosh(ε) + cosh(p− iχ), ε = E/T, p = eV/T. (21)

By using Eqs. (2) and (17)-(21), one can obtain analytical expressions
for all cumulants. At zero temperature, the calculation essentially simplifies.
Indeed, at T → 0 and E > eV , the dominating terms in Eqs. (18)-(21) are
proportional to exp(ε), and therefore θ and θ± are equal to θφ. This implies
that the CGF is independent of the counting field at these energies, and all
cumulants turn to zero. At E < eV , the terms with exp(p − inχ) dominate,
and we arrive at simple relations,

cosh θ = e−iχ cosh θφ, cosh θ± = e−iχ cosh θφ ± (e−iχ − 1). (22)

At subgap voltage, eV < ∆φ, when the charge transport at T = 0 is only
due to the Andreev reflection, the current I, the shot noise power PI , and the
third cumulant C3 read

I = I∆q(z), q(z) =
∫ z

0

dx

x
arctanhx, PI = 2e

[
I − I∆f(z−1)

]
, (23)

C3 = N − N∆

2z2

[
(5z2 − 3)f(z−1) + z

]
, I∆ =

g∆φ

e
, N∆ =

I∆t0
e

, (24)

f(z) = (1/2)[z − (z2 − 1)arctanhz−1], z = eV/∆φ. (25)

At small voltages, eV 	 ∆φ, the magnitude of the shot noise doubles, PI =
(4/3)eI, and C3 = 4N/15 is four times larger compared to the normal case
[8, 2, 27, 1]. When the voltage increases and exceeds the gap edge, eV > ∆φ,
the normal electron processes at the energies E > ∆φ begin to contribute
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Fig. 2. Shot noise power and third cumulant vs superconducting phase (a, b) at
different voltages and T = 0, and vs voltage at different temperatures (c, d). Dashed
lines denote voltage dependencies in the normal state at T = 0. In the panel (d),
zero-bias slopes of the normalized C3(V ) are indicated.

to the charge transport, providing the normal-state voltage dependencies of
the cumulants at eV 
 ∆φ. At large voltage, the Andreev reflected particles
produce voltage-independent excess components of the cumulants,

I = IN − I∆f(z) + Iex, PI = 2eI∆(z2 − 1)f(z) + P ex
I , IN = gV, (26)

C3 =
N∆

2
(z + 1)

{
(z − 1)

[
8z/3 − (8z2 − 3)f(z)

]
− 1/3

}
+ Cex

3 , (27)

Iex = (I∆/2)
(
π2/4 − 1

)
, P ex

I = 2eIex, Cex
3 = (N∆/2)

(
π2/4 − 4/3

)
. (28)

At nonzero temperatures, T �= 0, we calculate the cumulant spectral den-
sities I(E), P (E) and C(E) defined as

I = I∆

∫ ∞

0

dE I(E), PI = 2eI∆

∫ ∞

0

dE P (E), C3 = N∆

∫ ∞

0

dE C(E).

(29)
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Here I(E) = f1 sinh p/Z(0), and the functions P (E) and C(E) at E < ∆φ

read

P (E) =
2

Z2(0)
[
2Qf1 + (1 − f2) sinh2 p

]
, Q = 1 + cosh ε cosh p, (30)

C(E) =
sinh p
Z3(0)

{
4f1 sinh2 ε+ (2f2+3f3) sinh2 p+ 2Q [3(1−f2)−2f1]

}
, (31)

whereas at E > ∆φ they are given by equations,

P (E) =
2

Z2(0)

[
Q
(
1 + 2f1 − 2f2

cosh p− 1
cosh ε+ 1

)
+ sinh2 p− Z(0)

]
, (32)

C(E) =
sinh p

Z3(0)(1 + cosh ε)

{
4f1(1 + cosh ε)(Q+ sinh2 ε) (33)

+ 3
[
Z(0)(1 − 2f3) +Q

(
4(1 − f2 + f3 cosh ε) + 3 cosh ε− 2f3

)
+ sinh2ε

(
2f3 − cosh ε+ (3 − 5 cosh p)f2

)]
+ f2(5 cosh ε− 1) sinh2 p

}
,

In Eqs. (30)-(33), the functions

f1 = θφ coth θφ, f2 = (f1 − 1)/ sinh2 θφ, f3 = (f2 − 1/3)/ sinh2 θφ. (34)

describe energy variation of quasiparticle spectrum which is most essential in
the vicinity of the gap edge ∆φ.

As shown in Fig. 2,(a,b), the cumulants oscillate with the phase and exhibit
deep minima at φ mod 2π = π, when the gap closes and the cumulants ap-
proach their normal values. When the proximity gap ∆φ approaches eV , PI(φ)
exhibits a peak, while C3(φ) shows a step-like structure. Shown in Fig. 2,(c,d)
are voltage dependence of the cumulants for different temperatures plotted as
functions of variables that provide the universality of the curves for any φ. As
the temperature increases, the current noise approaches finite value at eV = 0
due to thermal fluctuations, and exhibits quadratic dependence on the applied
voltage at eV 	 T . Within the intermediate voltage region, T < eV < ∆φ,
PI(V ) becomes linear with doubled slope produced by the Andreev reflected
particles, and at eV > ∆φ, the slope turns to its normal-metal value. A con-
siderable excess noise at large voltages is contributed by both the thermal
fluctuations and Andreev reflection. A more interesting behavior is discovered
for the third cumulant. At nonzero temperature, the zero-bias slope of the
normalized C3(V ) is much larger than at zero temperature (up to the factor
5 which is similar to the normal structures [4]), approaching the value 4/3.
At larger voltages, T < eV < ∆φ, the slope of C3(V ) returns to the value
4/15 found for T = 0. At eV ∼ ∆φ, the curve C3(V ) shows N -like feature,
and finally, at eV > ∆φ, it approaches a straight line with the (normal-state)
slope 1/15. Such a behavior indicates that C3 acquires anomalously large
thermal component at voltage eV ∼ ∆φ, which, however, rapidly decreases at
eV > ∆φ and/or T > ∆φ towards the normal metal level.
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Fig. 3. Effective transferred charge (a), differential noise (b), and differential resis-
tance (inset) vs voltage at φ = 0 (solid lines) and φ = 0.7π (dashed lines), T = 0.

The singularity in the DOS at the proximity gap edge produces interest-
ing features of the differential transport characteristics of the interferometer
shown in Fig. 3. First, we note that the differential resistance Rd = dV/dI
turns to zero at eV = ∆φ (see inset in Fig. 3,a), which is explained by full
transmission of the NS junction at the resonant energy ∆φ. Correspondingly,
the differential Fano factor dPI/dI = Rd(dPI/dV ), which is commonly inter-
preted as effective transferred charge, qeff = (3/2)dPI/dI, also turns to zero,
qeff = 0e, while the differential noise normalized in a similar way, (3R/2)
dPI/dV , shows a large peak of the height 3e. Thus we conclude that none
of these quantities can be unambiguously associated with the physical ele-
mentary transferred charge, but they rather reflect the energy variation of
the transmission characteristics. Similar effects have been predicted for an NS
structure with opaque interfaces [26] where a considerable enhancement of
dPI/dV and suppression of dPI/dI occur, however, at small applied voltage
determined by large dwell time of quasiparticles.

It is instructive to compare our analytical results for short-arm interfer-
ometers with that obtained numerically for long NS junctions with a small
minigap Eg ∼ ETh 	 ∆. The results are qualitatively similar: in long junc-
tions, qeff is equal to 2e at eV 	 Eg and has a minimum at eV ≈ Eg(φ),
which moves towards small voltage when at φ → π [10]; the differential noise is
also non-monotonous and approaches maximum at eV ≈ 5ETh [9]. After this
comparison we see that the proximity gap ∆φ in short junctions plays the role
of the minigap Eg in long junctions and determines the feature in the effective
charge, though this feature at eV ∼ Eg in long junctions is much less pro-
nounced. However, as noted above, a qualitative difference of long junctions
is the existence of an intermediate incoherent voltage region Eg 	 eV 	 ∆,
where both the effective charge and the normalized differential noise have the
value 2e, and their crossover to e occurs only at eV ≥ ∆ [28].
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In conclusion, we have studied the full counting statistics of a normal diffu-
sive wire confined between the normal electrode and SNS junction controlled
by the magnetic flux through a superconducting loop (Andreev interferome-
ter). Assuming the size of the mesoscopic structure to be much smaller than
the coherence length, we calculated analytically the cumulant-generating func-
tion for arbitrary applied voltage and temperature. We studied in detail the
second (the current noise) and the third cumulants. Both quantities oscil-
late with the phase difference across the junction and show non-monotonous
voltage dependence in the vicinity of the proximity gap edge, which reflects
resonant transmission of the structure at the singularity of the density of
states.

This work was supported by the U.S. Department of Energy, Office of
Science under contract No. W-31-109-ENG-38.

In this Appendix we outline, for reference purposes, the procedure and
summarize the results of calculation of the CGF for a diffusive connector
between normal reservoirs, by using the extended Keldysh-Green’s technique.
For generality, we consider a diffusive wire interrupted by tunnel barriers,
which enables us to present several original results and to examine various
limiting situations.

In normal systems, the matrices Ǧ and Ǐ are traceless in the Keldysh space
and therefore they can be expressed through 3-vectors with the components
diagonal in the Nambu space, Ǧ = gτ , Ǐ = Iτ , where τ is the vector of
the matrices τ , and g2 = 1. Since the lhs of Eq. (4) turns to zero in normal
systems, the formal solution of Eq. (4) for the matrix current density ǏN in
each segment of the wire can be easily obtained,

ǏN = gN ln Ǧ1Ǧ2 = gN ln[g1g2 + iτ (g1 × g2)] = τIN ,

IN = igNpφN , φN = arccos g1g2, (35)

where gN is the conductivity of the wire segment, Ǧ1,2 are the Green’s func-
tions at the left and right segment edges, respectively, φN is the angle between
the (complex) unit vectors g1 and g2, and p = (gL × gR)/ sinφN is the unit
vector perpendicular to g1 and g2.

The matrix current ǏB through the tunnel barrier can be expressed in
terms of Green functions Ǧ− and Ǧ+ at the left and right sides of the barrier
by using the boundary condition [29],

ǏB− = ǏB+ =
gB

2
[Ǧ−, Ǧ+] = τIB,

IB = igBp sinφB , φB = arccos g−g+, (36)

where p = (g− × g+)/ sinφB and gB is the barrier conductance.
The conservation of the matrix current along the connector, Ǐ = const,

following from Eq. (4) and the boundary condition in Eq. (36), results in
conservation of the vector current, I = IN = IB = const. This implies that
for all elements of the connector, the unit vectors p coincide, therefore the
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Green’s vectors g lye in plane, and the vector p can be constructed from
known Green’s vectors gL and gR in the reservoirs, p = (gL × gR)/ sinφ,
where φ is the angle between gL and gR,

φ = arccos[1 + P−+(eiχ − 1) + P+−(e−iχ − 1)], (37)
Pσσ′ = nσ(1 − nσ′), n− = nF (E), n+ = nF (E + eV ).

From the current conservation, we also conclude that all elements are charac-
terized by a single variable η,

gB sinφB = gNφN = gη = const, (38)

where the normalization constant g is chosen to be equal to the conductance
of the whole connector. Thus, the vector current is given by equation,

I =
igη

sinφ
(gL × gR). (39)

The planar rotation of the Green’s vector results in the additivity of the angles
between all consecutive vectors g, therefore the sum of these angles is equal
to φ, ∑

wires

φN +
∑

barriers

φB = φ = arccos(gLgR), (40)

which leads to the equation for the parameter η(φ),

γNη+
∑

k
arcsin(γkη) = φ, γN = RN/R, γk = Rk/R, γN +

∑
k
γk = 1,

(41)
where RN is the net resistance of all wires, Rk is the resistance of the k-th
barrier, and R = g−1.

By using the definitions in Eq. (3), we obtain the counting electric current
I(χ) and the CGF,

I(χ) =
1
2e

∫ ∞

0

dETrσzIx =
ig

2e

∫ ∞

0

dETr
σzη

sinφ
(gL × gR)x, (42)

S(χ) =
gt0
4e2

∫
dETr

[
rNη

2/2 +
∑

k

(
1 −

√
1 − r2kη

2
)
/rk

]
, (43)

We note that the statistics is insensitive to the position of the barriers and
depends only on the barrier resistances and the net resistance of the diffusive
part of the connector. In the absence of barriers, rk → 0, the CGF reads

S(χ) =
gt0
4e2

∫
dE φ2 (44)

=
gt0
4e2

∫
dE arccos2

[
1 + P−+

(
eiχ − 1

)
+ P+−

(
e−iχ − 1

)]
.
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At zero temperature, the integration over energy in Eq. (43) can be explicitly
performed,

S(χ) =
N

2

[
rNη

2/2 +
∑

k

(
1 −

√
1 − r2kη

2
)
/rk

]
, (45)

where N = gV t0/e. From Eq. (45) we find the Fano factor F in the shot noise
power PI = eFI,

F = (2/3) (1 + 2B3) , Bn =
∑

k
rn
k , (46)

which varies between the Poissonian value F = 2 for the tunnel connector and
1/3-suppressed value, F = 2/3, in the absence of barriers. The third cumulant
C3 varies between N for Poissonian statistics in the single barrier case and
N/15 for a diffusive conductor,

C3(V, 0) =
(
N/15

)
[1 + 10B3 (1 + 4B3) − 36B5] . (47)

It is interesting to note that Eq. (41) can be easily transformed into equa-
tion for the transparency distribution ρ(T), by making use of the relation
of the generalized circuit theory between the counting current I(χ) and the
matrix current Ǐ following from Eqs. (6) and (3),

I(χ) =
1
4e

∫ ∞

0

dETrτxσz Ǐ , Ǐ =
g

2

∫ 1

0

dTρ(T)T[ǦL, ǦR(χ)]W̌−1. (48)

Rewriting these equations in the vector representation, comparing them with
Eq. (42), and introducing the variable z = (1 − gLgR)/2, we obtain the
equation for ρ(T), ∫ 1

0

TdTρ(T)
1 − zT

=
η

2
√
z(1 − z)

, (49)

where η obeys Eq. (41) with the function φ(z) = 2 arcsin
√
z in the right-hand

side (rhs). The solution of Eq. (49) has the form ρ(T) = Re η/2πT
√

1 − T,
where η(T) is the solution of Eq. (41) with the function π+2i arccosh(1/

√
T)

in the rhs [24].
In some limiting cases, one can obtain an analytical solution of Eq. (41). In

particular, if the number M of the barriers is large, M 
 1, then the resistance
of each barrier is small compared to the net resistance, Rk 	 R. In this case,
the approximate solution of Eq. (41) is η = φ, and the CGF coincides with
that for diffusive wire, Eq. (44). In the tunnel limit, when the resistance of
each barrier much exceeds the net resistance of diffusive segments, Rk 
 RN ,
the first term in Eq. (41) can be neglected. Then an analytical expression for
the parameter η and the CGF at arbitrary M can be obtained in the case of
equivalent barriers, rk = 1/M ,

η = M sin
φ

M
, S(χ) = NM2 sin2 arccos eiχ/2

M
, (50)
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when the Fano factor is given by F = (2/3)
(
1 + 2/M2

)
. In the limit of large

number of the barriers, M 
 1, we return to the diffusive statistics, while
for single-barrier structure, M = 1, we obtain Poissonian statistics, S(χ) =
N(eiχ − 1).

At arbitrary temperature, the cumulants can be found analytically by
asymptotic expansion in Eqs. (41), (43) over small η and χ. In particular, the
noise power,

PI(V, T ) =
4T
3R

[
(1 + 2B3)

p

2
coth

p

2
+ 2(1 −B3)

]
, (51)

exhibits crossover between the shot noise at T 	 eV and the Johnson thermal
noise PT = 4T/R at large temperature, T 
 eV . The voltage dependence of
the third cumulant,

C3(V, T ) = C3(V, 0) +
2
5
N(1 − 10B2

3 + 9B5)
sinh p− p

p sinh2(p/2)
, (52)

is linear in both limits and approaches (N/3)(1 + 2B3) at high temperatures.
In the absence of barriers, Bn = 0, Eq. (52) reproduces the result of a modified
kinetic theory of fluctuations for a diffusive wire [4].

In order to access FCS in multi-terminal structures, which consist of a
set of connectors attached between several normal electrodes and a diffusive
island (node) with negligibly small resistance, separate counting fields χα and
parameters ηα are to be introduced in each arm [16],

Iα = iξα(gα × gc), ξα = gαηα/ sinφα. (53)

The quantities ηα obey the equations similar to Eq. (41), with the angles
φα = arccos(gαgc) in the rhs, where the Green’s vector gc at the node can be
found from the current conservation law,

∑
α Iα = 0,

gc = G/
√

G2, G =
∑

α
ξαgα. (54)

According to Eq. (54), the vector gc depends on all counting fields χα,
which reflects cross-correlations between the currents in different connectors.
For the system of tunnel connectors, where the quantities ξα are equal to the
conductances gα and therefore become independent of χ, the CGF at zero
temperature can be explicitly evaluated [21],

S{χ} =
V t0
2e

G

√
1 + 4

∑
α
gV gα(eiχα − 1), gα = gα/G, G =

∑
β
gβ ,

(55)
where the index V denotes the voltage biased electrode.

For arbitrary connectors, the cumulants can be found from asymptotic
solutions of the equations for ηα and gc at small χα. For instance, the partial
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current through α-th connector is Iα = V gαgV , and the Fano factors defined
as Fαβ = (2ei/Iα)(∂Iα{χ}/∂χβ)χ=0 read

Fαβ =
(
2−4

3
gV

)
δαβ−

4
3
gβ

[
1+gV (B3α+B3β)−B3V (1−gV )2 −gV

∑
γ �=V

gγB3γ

]
.

(56)
The diagonal elements Fαα of the matrix Fαβ have the meaning of the Fano

factors for the shot noise in α-th connector and may vary between 2/3 and
2. For large number of the terminals, when the normalized conductances gα

become small, they approach Poissonian value Fαα = 2. The cross-correlators
Fαβ (α �= β) between the currents in different terminals are negative due
to Pauli principle [28]. In a particular case of diffusive connectors (Bα = 0),
Eq. (56) reproduces the result of Ref. [30] for a so-called star-shaped geometry.

References

1. L.S. Levitov and G.B. Lesovik, JETP Lett. 58, 230 (1993); H. Lee, L.S. Levitov,
and A.Yu. Yakovets, Phys. Rev. B 51, 4079 (1995); L.S. Levitov, H.W. Lee,
and G.B. Lesovik, J. Math. Phys. 37, 4845 (1996).

2. B.A. Muzykantskii and D.E. Khmelnitskii, Physica B 203, 233 (1994).
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